
Robert Schilling

Hardware Extensions and Compiler
Support for Protection Against Fault

Attacks

DOCTORAL THESIS
to achieve the university degree of

Doctor of Technical Sciences; Dr. techn.

submitted to
Graz University of Technology

Assessors

Prof. Stefan Mangard
Graz University of Technology, Austria

Prof. Ingrid Verbauwhede
Katholieke Universiteit Leuven, Belgium

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology

Graz, September 2023

i

Don’t adventures ever have an end? I suppose not.
Someone else always has to carry on the story.

BILBO BAGGINS, BY J.R.R. TOLKIEN

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used.

ii

Abstract

Software is ubiquitous in all applications of modern lives. The correct execution
of software is essential for the functionality and security of the underlying device.
Fault attacks undermine the correct software execution and therefore break
the security of many devices. Attackers with physical proximity can induce
faults and disrupt the correct operation. With recent research results, faults
can even be induced via software remotely, bringing those attacks to even larger
systems. Unfortunately, the current processors do not offer considerable support
in safeguarding software execution from fault attacks.

In this thesis, we tackle the challenge of secure software execution in the
presence of fault attacks from three perspectives. First, we look into this problem
from an algorithmic and energy efficiency point of view. We analyze a hardware
accelerator for fault- and side-channel secure cryptography. Instead of deploying
redundancy-based protection against faults, we explore fresh re-keying as an
algorithmic way of protection. The accelerator is deeply integrated into a
multi-core System-on-Chip (SoC) and provides fault-protected (authenticated)
encryption with an energy budget of a few pJ/op. Then, we shift the perspective
and analyze how a compiler-assisted approach can be used to protect arbitrary
software against faults. We show that existing hardware primitives from the
ARM Instruction Set Architecture (ISA) can be used to build a Control-Flow
Integrity (CFI) protection scheme against software- and fault-based control-flow
attacks. By developing FIPAC, a basic block granular CFI protection scheme with
full compiler support, we can protect software with different security guarantees
against control-flow attacks. FIPAC is further the pillar to protect the system call
interface of an operating system against faults. Eventually, we solve the challenge
of unprotected conditional branches in the presence of faults, even with deployed
CFI. By designing a protected comparison that is linked to the CFI scheme, we
inherently provide protection for security-critical conditional branches. Finally,
we investigate the protection of memory accesses in the physical and virtual
memory domain against fault attacks. With reasonable hardware and runtime
overheads, we protect the memory subsystem of embedded- and application-class
processors against faults. These mechanisms use the help of the compiler and
can be automatically applied to arbitrary software. These developments show
that a compiler-assisted hardware-software code design can lead to efficient and
secure countermeasures for different performance profiles.

iii

Acknowledgements

I would like to express my heartfelt gratitude to all the individuals who have
helped and supported me throughout my PhD journey.

First and foremost, I would like to thank my advisor Stefan Mangard for his
invaluable guidance, support, and encouragement. His insights, expertise, and
patience have been instrumental in shaping my research and helping me grow as
a scientist. I am truly grateful for all his efforts and for believing in me. I would
also like to thank Ingrid Verbauwhede for agreeing to asses my thesis and for her
valuable feedback and suggestions.

I would like to thank all my incredible co-authors who either gave me the
chance to collaborate with them on their research or contributed actively to mine.
In particular, thank you to Luca Benini, Francesco Conti, Michael Gautschi,
Germain Haugou, Frank Gürkaynak, Igor Loi, Michael Muehlberghuber, Pascal
Nasahl, Stefan Mangard, Antonio Pullini, Davide Rossi, Pasquale Davide Schi-
avone, Martin Unterguggenberger, Thomas Unterluggauer, Stefan Weiglhofer,
and Mario Werner with whom I wrote the papers discussed in this thesis. More-
over, I am thankful to work with Roderick Bloem, Claudio Canella, Daniel Gruss,
Jan Hoogerbrugg, Manuel Jelinek, Florian Kargl, Anja Karl, Thomas Korak,
Moritz Lipp, Marcel Medwed, Rishub Nagpal, Markus Ortoff, David Schaffenrath,
and David Schrammel on exciting papers and discussing new ideas. Thank you
all for all the interesting discussions and talks, input, and all your work. Without
all of you, my journey through the PhD would not have been the same.

I am deeply grateful to my friends at IAIK for their interesting discussions in
the kitchen, on a couch, or elsewhere. Especially, I am very grateful to Mario
Werner, Pascal Nasahl, and Martin Unterguggenberger. Mario, thank you for
motivating me during my PhD studies and for all the great collaborations we
had, for all the Kepabs at Hungerstopper, and for all the beer. Thank you Pascal,
for the fruitful discussions, the amazing time in our office, and an and open ear
for all problems. Thank you Martin, for giving me a reason to buy strawberry
juice again.

I am also grateful to my family and friends for their love and support through-
out my PhD studies. Their encouragement and enthusiasm have kept me moti-
vated and inspired. I would also like to extend my special thanks and love to my
fiancée, Anna, for her unwavering love, support, and patience. She has been my
constant source of strength and inspiration throughout my PhD journey, and I
am grateful to have her by my side. Thank you, Anna, for always being there for
me. I love you.

Robert

iv

Table of Contents

Affidavit ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables x

List of Figures xi

Glossary xiv

1 Introduction 1
Problem Statement . 3
Contribution and Outline . 4

2 Fault Attacks and Countermeasures 8
2.1 Physical Fault Induction Techniques 8
2.2 Software-Induced Fault Attacks 9
2.3 Fault Models . 10
2.4 Fault Exploitation . 11

2.4.1 Fault Attacks on Cryptographic Implementations 12
2.4.2 Exploiting Faults on Non-Cryptographic Software 12

2.5 Countermeasures Against Fault Attacks 13
2.5.1 Duplication-Based Countermeasures 15
2.5.2 Error Detection Codes . 16
2.5.3 Fresh Re-keying to Counteract Fault Attacks 20

3 Control-Flow, Control-Flow Attacks, and Control-Flow In-
tegrity 23
3.1 Control-Flow Attacks . 24

3.1.1 Software-Based Control-Flow Attacks 24
3.1.2 Fault-Based Control-Flow Attacks 24

3.2 Control-Flow Integrity . 25
3.2.1 Software CFI Protection Schemes 25

v

Table of Contents vi

3.2.2 Fault CFI Protection Schemes 25

4 Energy-Efficient Encryption with Algorithmic Fault Protection
of IoT End-Nodes 27
4.1 Background . 30

4.1.1 Threat Model . 30
4.1.2 Energy and Security Requirements of IoT End-Nodes . . 31
4.1.3 Leakage-Resilient Encryption with Re-Keying and a 2PRG 32
4.1.4 Re-Keying Function . 33

4.2 Isap - Lightweight Authenticated Encryption 33
4.3 SoC Architecture . 35
4.4 Cluster-Coupled Accelerator Engines 38

4.4.1 Hardware Encryption Engine 40
4.5 Experimental Evaluation . 42

4.5.1 System-on-Chip Operating Modes 42
4.5.2 HWCRYPT Performance and Power Evaluation 44
4.5.3 Comparison with State-of-the-Art 45

4.6 Use Cases . 47
4.6.1 Secure Autonomous Aerial Surveillance 48
4.6.2 Local Face Detection with Secured Remote Recognition . 50
4.6.3 Seizure Detection and Secure Long-Term Monitoring . . . 50

4.7 State-of-the-Art and Related Work 51
4.7.1 Low-Power Encryption Hardware Intellectual Property (IP) 51
4.7.2 Internet-of-Things (IoT) End-Node Architectures 52

4.8 Conclusion . 53

5 FIPAC: Control-Flow Protection with ARM Pointer Authen-
tication 55
5.1 ARM Pointer Authentication . 57
5.2 Threat Model and Attack Scenario 58

5.2.1 Threat Model . 58
5.2.2 Attack Scenario . 59
5.2.3 CFI against Software- and Fault-Based Control-Flow At-

tacks . 61
5.3 Design of FIPAC . 62

5.3.1 Signature-Based Control-Flow Integrity 63
5.3.2 State Updates with ARM Pointer Authentication 65
5.3.3 Placement of Checks . 66

5.4 Implementation . 66
5.4.1 System Implementation 67
5.4.2 CFI Primitives . 67
5.4.3 Protection of Control-Flow Instructions 69
5.4.4 Toolchain . 70

5.5 Evaluation . 72
5.5.1 Security Evaluation . 72
5.5.2 Security Comparison . 75

Table of Contents vii

5.5.3 Functional Evaluation . 77
5.5.4 Performance Evaluation 77

5.6 Example Exploits . 81
5.7 Data Protection with FIPAC . 83
5.8 Discussion . 84

5.8.1 FIPAC Hardware Requirements 84
5.8.2 FIPAC on ARMv8.3-A . 85
5.8.3 FIPAC on Other Architectures 85
5.8.4 Dynamic Key Handling 86
5.8.5 Instruction Granular Protection 86
5.8.6 Compatibility . 86

5.9 Conclusion . 87

6 System Call Flow Protection and Dynamic CFI 88
6.1 Background . 90

6.1.1 Linux and the System Call Interface 90
6.2 Threat Model and Attack Scenario 91

6.2.1 Attack Scenario . 91
6.2.2 FIPAC Intra-Basic Block Protection 93

6.3 Design of SFP . 93
6.3.1 Requirements for System Call Protection 93
6.3.2 System Call Protection 94
6.3.3 Dynamic Instrumentation 95

6.4 Implementation . 97
6.4.1 Toolchain . 97
6.4.2 Kernel Support . 98

6.5 Evaluation . 99
6.5.1 Security Evaluation . 99
6.5.2 Functional Evaluation . 101
6.5.3 Performance Evaluation 101

6.6 Discussion . 103
6.6.1 Dynamic System Call Instrumentation 103
6.6.2 CFI Checking Policy Extension 103
6.6.3 Compatibility . 103

6.7 Related Work . 104
6.8 Conclusion . 105

7 Secure Comparisons and Conditional Branches for CFI 106
7.1 Threat Model and Related Work 108

7.1.1 Threat Model . 108
7.1.2 Conditional Branch Protection via Re-checking 109
7.1.3 Conditional Branches in the Context of CFI 109

7.2 Protecting Conditional Branches against Fault Attacks 109
7.2.1 Requirements for CFI Protection Scheme 111

7.3 Protected Comparisons with AN-Codes 111
7.3.1 Protected Equal and Not-Equal Condition Computation . 113

Table of Contents viii

7.3.2 Parameter Selection . 114
7.4 Implementation and Evaluation 115

7.4.1 Implementation . 115
7.4.2 Cost Analysis . 115
7.4.3 Performance Evaluation 117

7.5 Security Analysis . 118
7.6 Compatibility . 118

7.6.1 Compatibility with FIPAC 118
7.6.2 Compatibility with Sponge-Based Control-Flow Protection

(SCFP) . 118
7.7 Conclusion . 119

8 Secure Memory Accesses in the Presence of Fault Attacks 121
8.1 Background of Memory Access 123

8.1.1 ANB-Codes for Memory Access Protection 124
8.1.2 ARM Pointer Authentication 124

8.2 Threat Model and Attack Scenario 124
8.2.1 Threat Model . 124
8.2.2 Attack Scenario . 125

8.3 Pointer Protection with Residue Codes 126
8.3.1 Overview . 126
8.3.2 Pointer Layout and Residue-Code Selection 127
8.3.3 Pointer Operations . 128

8.4 Evolved Memory Access Protection 129
8.4.1 Overview . 129
8.4.2 The Linking Approach . 130
8.4.3 Memory-Mapped I/O . 132

8.5 Architecture . 133
8.5.1 New Instructions . 133
8.5.2 Hardware . 134
8.5.3 Software . 135

8.6 Evaluation . 137
8.6.1 Future Work . 138

8.7 Conclusion . 138

9 Protected Memory Accesses in the Virtual Memory Domain 140
9.1 Page-based Virtual Memory . 142
9.2 Threat Model and Attack Scenario 143

9.2.1 Threat Model . 143
9.2.2 Faults on Virtual Memory 143
9.2.3 Requirements for Protected Virtual Memory Accesses . . 144

9.3 Design of SecWalk . 145
9.3.1 Protected Pointers and Memory Accesses 145
9.3.2 Secure Page Table Walk 146
9.3.3 Translation Look-Aside Buffer (TLB) Design 150
9.3.4 Page Directory Setup . 150

Table of Contents ix

9.3.5 Shared Memory Support 151
9.4 Implementation . 151

9.4.1 Hardware Implementation 152
9.4.2 Toolchain Implementation 154

9.5 Evaluation . 154
9.5.1 Hardware Evaluation . 154
9.5.2 Performance Evaluation 154
9.5.3 Security Evaluation . 156

9.6 Related Work . 156
9.7 Conclusion . 158

10 Conclusion and Outlook 159
Outlook . 160

List of Contributions 163
10.1 Main Publications . 163
10.2 Contributed Publications . 164

Bibliography 167

List of Tables

4.1 Comparison between Fulmine and several platforms of the state-
of-the-art in encryption, data analytics, and IoT end-nodes. . . 43

5.1 Protection guarantees and vulnerabilities for Software CFI (SCFI)
and Fault CFI (FCFI) protection schemes compared to FIPAC. . 76

5.2 Code size overhead for SPECspeed 2017. 79
5.3 Code size overhead for Embench. 80

7.1 Condition values for encoded <,≤, >,≥ condition values. 114
7.2 Qualitative overhead analysis of the building blocks. 116
7.3 Size and runtime overhead of different branch protections. 117

8.1 Code and runtime overhead for different benchmark programs
from an Hardware Description Language (HDL) simulation. . . . 137

9.1 Hardware utilization of SecWalk. 155
9.2 Feature comparison of SecWalk compared to related work. 157

x

List of Figures

2.1 Re-keying g function combined with an encryption/decryption
primitive. 21

3.1 Control-Flow Graph (CFG) showing basic blocks with ARMv8
instructions. 24

4.1 2PRG-based leakage-resilient stream cipher. 32
4.2 Re-keying function based on a polynomial multiplication with a

block-cipher-based feed-forward computation. 33
4.3 IsapEnc with initialization. 34
4.4 IsapRk. 34
4.5 IsapMac. 35
4.6 Fulmine SoC architecture. The soc domain is shown in shades

of blue, the cluster domain in shades of green. 36
4.7 Fulmine power management architecture and power modes. . . 38
4.8 HWCRYPT datapath overview, with details of the AES Engine

and the Sponge Engine. 39
4.9 Fulmine chip microphotograph with main components highlighted. 44
4.10 Cluster maximum operating frequency and power in the cry-cnn-

sw, kec-cnn-sw, and sw operating modes. Each set of power
bars, from left to right, indicates activity in a different subset of
the cluster. kec-cnn-sw and sw bars show the additional power
overhead from running at the higher frequency allowed by these
modes. 45

4.11 Performance and efficiency of the HWCRYPT accelerator in
terms of time/energy for elementary output. 46

4.12 A Fulmine SoC connected to 16 MB of Flash, 2 MB of Ferroelectric
RAM (FRAM), and sensors (the grey area is taken into account
for power estimations). 47

4.13 Secure autonomous aerial surveillance use case based on a ResNet-
20 Convolutional Neural Networks (CNN) [He+16] with AES-
2PRG encryption for all weights and partial results. kec-cnn-sw
and cry-cnn-sw operating modes at VDD =0.8 V. 48

xi

List of Figures xii

4.14 Local face detection, secured remote recognition use case based on
the 12-net and 24-net CNNs from Li et al. [Li+15] on a 224×224
input image, with full Isap encryption of the image if a potential
face is detected. cry-cnn-sw operating mode at VDD =0.8 V.
We consider that the first stage 12-net classifies 10 % of the input
image as containing faces, and that the second stage 24-net is
applied only to that fraction. 49

4.15 Electroencephalogram (EEG)-based seizure detection and secure
data collection. cry-cnn-sw operating mode at VDD =0.8 V. . 51

5.1 Valid control-flow. 60
5.2 Detectable control-flow attack. 61
5.3 Successful control-flow attack. 61
5.4 Justifying signature for control-flow merges. 63
5.5 CFI state patch for direct calls. 64
5.6 CFI state patch for indirect calls. 65
5.7 Custom toolchain to build protected binaries. 71
5.8 Control-flow hijack from B to C. Due to a state collision, the

control-flow hijack is not detected. 74
5.9 A coarse-grained check policy. After n updates, a collision rectifies

the faulty state. 74
5.10 Collision probability after N state updates. 75
5.11 Number of functions with N basic blocks. 76
5.12 Runtime overhead for SPECspeed 2017. 78
5.13 Runtime overhead for Embench. 79

6.1 Linux system call invocation. 91
6.2 Redirecting a system call using fault attacks. 92
6.3 System Call protection in SFP. Before a syscall, we cryptograph-

ically bind the syscall to the CFI state for later verification and
second-stage linking in the kernel. 96

6.4 The microbenchmark shows the system call latency of the getpid
system call for different kernel configurations. SFP increases the
system call latency by 1.9 %. 102

6.5 Macrobenchmark shows the performance impact of SFP on the
SPEC 2017 benchmark. We evaluate the impact of CFI only and
SFP, including the system call protection. 103

7.1 Conditional branch with CFI state. 110
7.2 Protected conditional branch with state update and n-bit redun-

dantly encoded comparison. 111
7.3 Modified LLVM compiler pipeline. Grey boxes indicate modifica-

tions or additions of/to the regular compilation flow. 116

8.1 Attack vector: Modified pointers and manipulated memory ac-
cesses. 125

List of Figures xiii

8.2 Encoded pointer representation. The actual 40-bit pointer value
p, the MMIO tag bit, and 23 bits of redundancy rp comprise an
encoded 64-bit pointer. 128

8.3 Byte-wise data linking of a 64-bit word. Each byte gets XORed
with its respective XOR-reduced encoded address. 132

8.4 Modified processor pipeline. The instruction decode stage is
extended with a 12-bit residue encoder, the execution stage with
a residue Arithmetic Logic Unit (ALU), and the write-back stage
with a pointer-reduction data-linking unit. 135

8.5 Residue ALU with a 41-bit adder and a shared residue encoder.
The addition result is automatically checked after the operation
by re-encoding the result and comparing it with the computed
residues and generating a redundant error signal. 136

9.1 Attack vector: A faulted page table translation leads to a wrong
memory access. 144

9.2 Encoded virtual address in Sv39. The upper 25-bits denote the
redundancy information of the multi-residue code. 146

9.3 Sv39 page table entry with the extended encoded Physical Page
number (PPN) to store the redundancy information. 147

9.4 Secure page table walk with linked page table entries. 148
9.5 CVA6 hardware architecture with SecWalk. The yellow parts

indicate changes in the design. 151
9.6 Hardware architecture the load-store-unit of CVA6. The yellow

parts indicate changes in the design. 152
9.7 Residue page table walker exploiting the redundancy properties

of residue codes. 153
9.8 Performance evaluation using microbenchmarks. 155

Glossary

AES-GCM AES in the Galois Counter Mode
ALU Arithmetic Logic Unit
AMD-SP AMD Secure Processor
ARM PA ARM Pointer Authentication
ASIC Application Specific Integrated Circuit
ASIL Automotive Safety Integrity Level
ASLR Address Space Layout Randomization

BMC Baseboard Management Controller

CFG Control-Flow Graph
CFI Control-Flow Integrity
CNN Convolutional Neural Networks
cpb cycles per byte
CPU Central Processing Unit
CSR Control and Status Register

DAG Directed Acyclic Graph
DEMUX Demultiplexers
DFA Differential Fault Analysis
DFIA Differential Fault Intensity Analysis
DMA Direct Memory Access
DOP Data-Oriented Programming
DPA Differential Power Analysis
DVFS Dynamic Voltage and Frequency Scaling
DWT Digital Wavelet Transform

ECB Electronic-Code-Book
ECG Electrocardiogram
ECU Electronic Control Unit
EDC Error Detection Code
EEG Electroencephalogram
ELF Executable and Linkable Format

xiv

Glossary xv

EMG Electromyogram

FCFI Fault CFI
FLL Frequency-Locked Loop
FPGA Field Programmable Gate Array
FRAM Ferroelectric RAM
FSA Fault Sensitivity Analysis

GPSA Generalized Path Signature Analysis

HDL Hardware Description Language
HWCRYPT Hardware Encryption Engine

IoT Internet-of-Things
IP Intellectual Property
IR Intermediate Representation
ISA Instruction Set Architecture

JIT Just-in-Time
JOP Jump-Oriented Programming

LSU Load-and-Store Unit
LUT Lookup Table

MAC Message Authentication Code
MMIO Memory-Mapped I/O
MMU Memory-Management Unit
MPSoC Multi-Processor SoC

OS Operating System

PAC Pointer Authentication Code
PC Program Counter
PCA Principal Components Analysis
PLC Programmable Logic Controller
PMP Physical Memory Protection
PO Page Offset
PPN Physical Page number
PTE Page Table Entry
PTW Page Table Walker

RCE Remote Code Execution

Glossary xvi

ResPTW Residue Page Table Walker
ROP Return-Oriented Programming

SCFI Software CFI
SCFP Sponge-Based Control-Flow Protection
SCM Standard Cell Memory
SECDED Single-Error Correction and Double-Error Detec-

tion
SEV Secure Encrypted Virtualization
SFA Statistical Fault attacks
SFCFI Software-Fault CFI
SIFA Statistical Ineffective Fault Attacks
SIMD Single Instruction Multiple Data
SoC System-on-Chip
SPA Simple Power Analysis
SVM Support Vector Machine

TCDM Tightly-Coupled Data Memory
TEE Trusted Execution Environment
TLB Translation Look-Aside Buffer
TMR Triple Modular Redundancy

UAV Unmanned Aerial Vehicle
ULP Ultra-Low Power

VPN Virtual Page Number

XEX XOR–Encrypt–XOR
XTS XEX-based Tweaked-Codebook mode with Ci-

phertext Stealing

1
Introduction

In the last few decades, there has been a massive transformation in the landscape
and scale of computing devices. The number of applications as well as the number
of processing devices massively increased to hundreds of billions of processing
cores [ARM21]. In the past, computers or other processing systems were used
only for specific applications in specific domains. However, today’s landscape
of computers is vastly different, as they have become ubiquitous and present in
almost every aspect of our lives. The appearance and emergence of the Internet-of-
Things (IoT), which connects a large number of different devices and applications,
increases this transformation. Traditionally, devices of the IoT simply run bare-
metal applications, but as embedded systems became more sophisticated, small
real-time operating systems were deployed on them. Nowadays, with all the
advances in technology, these devices often are based on powerful application-class
processors that run off-the-shelf operating systems. These evolutions also changed
the landscape of commodity devices. In addition to personal computers such as
desktops and laptops, we now rely heavily on powerful smartphones, tablets, and
even cloud-based systems on a daily basis. Consequently, our modern lives are
entangled with computers in various forms and form factors. Independent of the
device’s form factor, performance, or concrete application, they all contain or
process a wide array of valuable assets that require varying degrees of protection.

The proliferation of computing systems, coupled with their abundance of
valuable assets, has a notable consequence – the significant expansion of the
attack surface. This expanded attack surface provides malicious actors with
numerous opportunities to launch various attacks, whether extracting sensitive
information, gaining unauthorized access to systems, or achieving other malicious
objectives. One common approach employed by attackers to perform an attack is
to exploit different software vulnerabilities, which can have different root causes.

1

2

For example, a bug in the application logic or a lack of proper access control in
the software can pave the way for unauthorized access to highly sensitive data.
However, software attacks can also occur at a lower level of abstraction. One
example is a memory corruption vulnerability on the heap memory, which can
serve as the entry point of a full exploit. Memory corruption can be used to
craft a control-flow hijack, such as Return-Oriented Programming (ROP) [Sha07]
or Jump-Oriented Programming (JOP) [Che+10]. This attack methodology is
extremely powerful and can even lead to arbitrary code execution of the attacked
system.

Although software-based attacks pose a significant threat to the system’s
security, it is crucial to recognize that not all hijacks are solely based on ex-
ploiting software bugs. There exists another class of attacks known as physical
attacks, which exploit the physical aspects of the system to compromise its
security. Physical attacks can further be classified into passive and active attacks.
Passive attacks, such as side-channel analysis, involve monitoring the physical
characteristics of a system during its operation to extract sensitive information.
These attacks capitalize on the unintended side effects of the system’s physical
implementation, such as power consumption, electromagnetic emissions, or timing
variations. By carefully analyzing this side-channel information, an attacker
can deduce cryptographic keys, passwords, or confidential data without directly
compromising the hardware, software, or underlying algorithms. On the other
hand, active attacks exploit physical effects to manipulate or disrupt the behavior
of the system directly. One such example is fault attacks, where an attacker
deliberately induces faults or errors in the system to subvert its regular operation.

During a fault attack, the attacker actively influences the device’s operating
conditions with the goal of manipulating an inner state of the system. Typi-
cally, the fault attacks manipulate the operating conditions out of the device’s
specifications, leading to unintended behavior. At this operating point, the
correct execution of all operations is not guaranteed anymore, which possibly
breaks the security measures of the system. Classic fault injection attacks exploit
the power supply [Bar+09; BFP19; BS03], the clock signal [Bar+06; PQ03;
RSG21], the temperature [HS13], or by shooting with a laser or electromagnetic
impulse onto the chip surface [BS97; Mor+13; SA02; Sel+15; WWM11; ZAV04].
The effort here depends on the methodology used, but dedicated setups to per-
form fault injections can be fairly cheap [New23]. Especially in the context of
processor architectures, fault attacks have shown to be an effective method to
consistently skip or repeat instructions [KH14; KSV13; SH08]. While these fault
methodologies require physical access to the device, more recent attacks have
shown that this constraint can be relaxed. Software-induced fault attacks make
faults a severe threat to a wide range of devices. For example, the Rowham-
mer effect [Kim+14] can be used to manipulate bits in memory. This behavior
can even be exploited remotely via Javascript [GMM16] or over the network
interface [Lip+20; Tat+18]. Recent fault attacks, such as Plundervolt [Mur+20],
VoltJockey [Qiu+19a; Qiu+19b], or CLKscrew [TSS17], show the impact of fault
attacks on commodity devices.

3

Both passive and active physical attacks showcase the importance of con-
sidering the physical aspects of a system’s security. While software attacks are
well-known and widely addressed with different protection mechanisms, physical
attacks demonstrate that they require dedicated countermeasures. Implementing
countermeasures against side-channel analysis or ensuring fault tolerance is es-
sential to mitigate the risk of physical attacks and safeguard the integrity and
confidentiality of computing systems.

In order to defend against fault attacks, it is necessary for critical applica-
tions to implement targeted countermeasures. Historically, much of the research
on protecting software against fault attacks focused on securing cryptographic
algorithms. As a result, specialized protection schemes have been developed and
deployed to secure specific cryptographic schemes. While these countermeasures
effectively protect cryptographic functions, other parts of the software are still
vulnerable to fault attacks. This is especially true for non-cryptographic elements
of the software, which may be just as critical as cryptographic functions. For ex-
ample, fault attacks have been used to compromise and attack Trusted Execution
Environments (TEEs) from all major vendors, showing the severance of faults on
commodity systems. To address this issue, it is necessary to develop and deploy
generic countermeasures that can provide protection against fault attacks across
a wide range of applications. Furthermore, it is important that countermeasures
can be applied transparently to existing software, i.e., automatically during
compilation or with transparent hardware changes, to be able to protect existing
codebases against fault attacks.

Problem Statement
Fault attacks have become a ubiquitous threat to a wide range of devices.
Traditionally, this class of attacks was only applicable to small and embedded
devices where the attacker has physical access, i.e., performing a physical fault
attack. However, new research methodologies have been developed such that fault
attacks are now also applicable to commodity desktop and server processors. In
this setting, faults can either be induced via a physical attack but also remotely
via a software interface, i.e., a software-induced fault attack. Consequently, a
large set of different devices with different application and performance profiles
are now susceptible to fault attacks.

Widely available architectures only consider a threat model from the software
perspective. The hardware provides simple isolation primitives such as memory
management/protection units or privilege modes, which are sufficient in their
threat model. These protection schemes succeed in isolating code and data,
providing integrity, and only granting access to their designated users. However,
the software relies on a key assumption that the hardware is operating as expected,
i.e., there is a contract between the hardware and the software. In this contract,
the software assumes that all executed instructions behave like it is specified
in the instruction set specification. This assumption is not necessarily correct
when faults are considered in the threat model since faults can manipulate the

4

hardware.
An attacker that has the capability to induce a fault can compromise a

system. Even a single bitflip, e.g., during a conditional branch, can already be
sufficient to completely undermine the full security of a system. Such a fault can
bypass permission checks, the verification of a cryptographic signature, or elevate
privileges. In fact, the correct control-flow of a program is essential to maintain
the security guarantees of a system. Similarly, a memory access creates different
attack points, where a fault attack can redirect the access and further compromise
the system. Faults can also be combined with classical software attacks, forming
a new class of combined attacks. These issues can have serious consequences,
including loss of sensitive information, financial damage, and reputation harm.

In summary, current computing architectures are not equipped to handle
environments in which an attacker can launch physical or combined physical and
software attacks. The processing systems do not have the necessary safeguards to
maintain the correct control-flow and to ensure the integrity of memory requests.
As a result, these architectures are not yet suitable for use in such a setting.
Hence, there is a need to develop new and effective methods for protecting
software against fault or combined attacks that are transparently applicable to
many devices.

Contribution and Outline
In this thesis, we advance the research of fault security by developing hardware
extensions and compiler support. We focus our research in three directions: 1 pro-
tecting data against fault attacks, 2 providing Control-Flow Integrity (CFI)
protection for software- and fault-based control-flow attacks, and 3 protecting
the memory subsystem against faults. These three pillars offer foundational
protection for secure software execution for different components of a system.

By integrating fault countermeasures at the algorithmic level, we show that
we can build energy-efficient encryption schemes that meet the requirements
of today’s IoT platforms. In terms of CFI, we explore the usage of existing
architectural features of ARM-based platforms and analyze if they can be re-
purposed to develop CFI protection for software- and fault-based control-flow
attacks. By reusing existing hardware features, we show that fault resilience
on the control-flow can be improved at a larger scale, as no hardware changes
are needed. We show that state-based CFI protection schemes can act as the
foundation for other countermeasures, as we use this method to protect the
system call interface and conditional branches against faults. In the third part,
we explore the efficient protection of memory accesses against faults. Integrating
small hardware changes to the system combined with a toolchain allows us to
automatically protect the memory subsystem from small embedded platforms
up to application-class systems. The exploitation of compiler-based approaches
allows us to automatically protect software against fault attacks, which are less
error-prone and also applicable to existing code bases.

The threat models throughout this thesis comprise powerful attackers that

5

are capable of inducing fault in the related components of the system, e.g., the
memory subsystem. We include faults independently of the induction method,
i.e., we cover physical and software-induced injection methods. The details of
different induction methods and threat models are further detailed in Chapter 2.

This thesis is based on seven peer-reviewed papers, of which I am the primary
author, as listed in Section 10.1. The remaining chapters of this thesis contain
large verbatim blocks of these publications. At the beginning of each chapter,
we state the contributions of each individual to those publications. Summarized,
the contributions of this thesis are as follows:

Chapter 2 gives an overview of related fault attack methodologies. We discuss
traditional fault attacks requiring physical access and also advanced software-
based fault attacks. For both types of attacks, we show how they can be used
to exploit different systems. Eventually, we summarize different state-of-the-art
countermeasures for protecting general-purpose software against fault attacks.

Chapter 3 introduces the basic definitions of the control-flow of a program.
We introduce different attacks on the control-flow, depending on the attacker’s
capabilities. We further discuss CFI, a generic approach to protect the control-
flow against different attacks. In this context, we cover different protection
schemes targeting different threat models.

Chapter 4 presents a hardware accelerator for energy-efficient fault- and side-
channel secure encryption. Instead of deploying traditional redundancy-based
countermeasures against fault attacks, we exploit the protection against fault
at the algorithmic level by using fresh-rekeying. The encryption accelerator
incorporates two encryption modes based on an AES-based stream cipher together
with a leak-free re-keying function and Isap, a sponge based authenticated
encryption scheme. The hardware accelerator is integrated into a multi-core
System-on-Chip (SoC) and is taped out to an Application Specific Integrated
Circuit (ASIC). In this work, we focus on evaluating the performance and
energy efficiency of the cryptographic accelerator and based on different uses
cases for this SoC. This chapter is based on two papers that were published
TCAS-I’17 [Con+17b] and DATE’18 [Sch+18b].

Chapter 5 presents FIPAC, a new CFI protection scheme for ARM-based
systems to counteract fault and software attacks. We build upon ARM Pointer
Authentication (ARM PA), a new feature of recent ARM architectures that
provides new instructions to cryptographically sign and authenticate pointers.
We use this feature to create to cryptography-based fine-granular CFI protection
scheme for ARM-based commodity systems. With the help of ARM PA, FIPAC
computes a cryptographically secure Control-Flow Graph (CFG) at basic block
granularity. An LLVM-based compiler instruments arbitrary C programs at
the level of basic blocks of the CFG and supports the instrumentation with
different checking policies. We provide an extensive evaluation to showcase
the functionality and the performance overheads and discuss FIPAC’s security

6

guarantees. The evaluation on the SPEC 2017 benchmark with different security
policies shows a geometric mean code overhead between 51–91 % and a runtime
overhead between 19–63 %. While these overheads are higher than for CFI
protection schemes against pure software attacks, FIPAC outperforms related
work protecting the control-flow against faults. This work was published at
COSADE’22 [SNM22b].

Chapter 6 extends the scope of protection of FIPAC and protects the interface
of user programs with the kernel. We show that state-based CFI protection
schemes, such as FIPAC, can be the foundation to provide system call flow
integrity. By statically linking the system call at the call site and dynamically
verifying it in the Linux kernel, we provide system call flow integrity. Due to the
dynamic instrumentation, we further provide security against side-channel and
replay attacks. Our prototype is based on the original toolchain of FIPAC but
includes a modified Linux kernel with support for dynamic CFI instrumentation
and system call verification. The evaluation of micro- and macrobenchmarks
based on SPEC 2017 shows an average runtime overhead of 1.9 % and 20.6 %,
which is only an increase of 1.8 % over plain control-flow protection with FIPAC.
This small impact on the performance shows the efficiency of SFP in protecting
all system calls and providing integrity for the user-kernel transitions. This work
was published at HASP’22 [Sch+23].

Chapter 7 aims to extend the control-flow protection of existing CFI protection
schemes towards the data domain by protecting the control-flow of conditional
branches. Conditional branches use application data to decide on the next
program location. We protect this decision in a three-fold way: First, we encode
application data to the redundant AN-code domain. Second, we develop new
comparison algorithms that preserve the redundancy throughout the computation.
Finally, we link the comparison result with the CFI protection scheme, thus,
providing end-to-end protection for conditional branches. We extend the LLVM
compiler so that standard code and conditional branches can be protected
automatically and analyze its security. Our design shows that the overhead in
terms of size and runtime is lower than state-of-the-art duplication schemes. This
work was published at DATE’18 [SWM18].

Chapter 8 provides a new protection scheme to comprehensively protect pointers,
pointer arithmetic, and memory accesses against fault attacks. We encode pointers
to a redundant multi-residue representation, which provides fault protection
without additional storage costs. Pointer arithmetic is protected within the
domain of the multi-residue code. Finally, we link the encoded address to the
data to protect the memory access against unintended redirects. To demonstrate
the applicability of this concept, we extend a RISC-V processor with a residue-
code Arithmetic Logic Unit (ALU) and linked load and store instructions and
provide a prototype implementation based on an Field Programmable Gate Array
(FPGA). We further develop a custom LLVM-based toolchain that transforms
all pointer arithmetic and load and store instructions to the protected domain.

7

Our evaluations on embedded benchmarks show that the countermeasure induces
an average overhead of 10 % in terms of code size and 7 % regarding runtime,
which makes it suitable for practical adoption. This work was published at
ACSAC’18 [Sch+18c].

Chapter 9 brings the previous work of Chapter 8 to larger applications by
providing support for virtual memory. Protected virtual addresses are translated
via a secure page table walk to yield a protected physical address for the actual
memory access. With the same linking approach from Chapter 8, still on the
protected physical address, SecWalk supports shared memory, which is needed
for larger applications. To show the feasibility of this protection scheme, we
extend an application-class RISC-V processor with a residue code ALU and a
protected hardware-based page table walk. We present an FPGA prototype
implementation and show that the area of the processor increases by 10 % . To
show the applicability on real-life applications, we port the microkernel seL4
to SecWalk, which yields a code overhead of 13.1 % and a runtime overhead of
11.6 %. This work was published at HOST’21 [Sch+21].

Chapter 10 concludes this thesis by summarizing our achievements. We provide
an outlook for future work and list all publications that have been included in
this thesis and all additional co-authored publications.

2
Fault Attacks and Countermeasures

In this section, we first elaborate on different methods of fault attacks and related
fault models. In the second part, we provide an overview of countermeasures and
discuss encoding schemes that are used in this thesis for different designs.

2.1 Physical Fault Induction Techniques
In a physically induced fault attack, the attacker has physical access to the
device and is in control of the operating conditions. During a fault attack, the
attacker actively influences the device’s operating conditions with the goal of
manipulating an inner state of the system, i.e., it is an active physical attack.
At this operating point, the correct execution of all operations of the system is
not guaranteed anymore.

Fault injection can occur from different induction methods. For example,
by shortly manipulating the power supply of a chip, e.g., the power supply is
reduced for a short period of time, a faulty operation can manifest within the
chip [Bar+09; BFP19; BS03]. Similar to this approach, also the glitches on the
clocks signal of a chip are used to induce a fault [Bar+06; PQ03; RSG21]. By
overclocking the chip during a single clock period, the chip can fail to update
a register, which for example, leads to a skipped instruction. To have better
precision on the induced fault, more advanced but also more expensive induction
methods come into play. By shooting with a laser or electromagnetic impulse
onto the chip surface [BS97; Mor+13; SA02; Sel+15; WWM11; ZAV04], the
fault has a new variable, i.e., the location on the chip surface. There exist many
other induction techniques, e.g., even the temperature [HS13] can used to disturb
the operation of an electronic system. Especially in the context of processor

8

2.2. Software-Induced Fault Attacks 9

architectures, fault attacks are an effective method to skip or repeat instructions
consistently [KH14; KSV13].

Meanwhile, commercial setups are available comprising the required hard-
ware and the necessary software tools. For example, ChipShouter [New23] is a
reasonably cheap fault injection setup for electromagnetic faults. There are even
advanced fault injection setups available, comprising a computer-controlled X-Y
coordinate table combined with a laser or EM-based induction technique [Ris23a;
SGS23]. While these setups are more expensive, they provide better precision in
injecting a fault.

Traditionally, these fault attacks target smaller systems such as smartcards
or low-power embedded microcontrollers for Internet-of-Things (IoT) devices.
However, recent research shows that fault attacks, such as undervolting, can
also be applied to desktop processors. VoltPillager [Che+21] performs message
injection on a system bus between the Central Processing Unit (CPU) and its
voltage regulators using an external device. This approach allows the attacker to
control the voltage to eventually undervolt the processor precisely. VoltPillager
manages to bypass Intel SGX and performs key recovery attacks from crypto-
graphic algorithms running inside the enclave. Interestingly, they also manage to
create buffer under- and overflows, typically in classic software attacks.

A similar attack has been performed on recent AMD CPUs that support
AMD Secure Encrypted Virtualization (SEV) [Buh+21]. SEV uses an internal
hardware root-of-trust, the AMD Secure Processor (AMD-SP), a dedicated ARM-
based microcontroller within the AMD System-on-Chip (SoC). Interestingly,
the processor-controlled external voltage regulator also controls the voltage of
the AMD-SP. By injecting messages on the communication bus between the
CPU and the voltage regulator, Buhren et al. are able to glitch the voltage of
the AMD-SP. They are able to exploit this to deploy custom firmware to the
AMD-SP, which allows an adversary to decrypt a virtual machine’s memory or
extract the endorsement keys of a SEV-enabled CPU.

2.2 Software-Induced Fault Attacks
Traditionally, physical fault attacks require physical access to a device. However,
with the advent of software-induced fault attacks, the constraint of requiring
physical access can be relaxed. With this new induction technique, it is possible
to induce faults in a system from software, which can even be performed remotely
over the network interface.

It started with finding the Rowhammer effect [Kim+14], where an attacker
frequently accessed the memory and thereby caused bitflips in the neighboring
memory cells. Rowhammer was exploited to escalate privileges on Linux [Goo15],
escape from software sandboxes [Goo15], or gain root privileges on Android
devices [Vee+16]. The access pattern of the memory accesses depends on the
relative location between the aggressor and victim cells. Still, the research
community found patterns such as single-sided or double-sided [SD15], one-
location [Gru+18], or the half-double pattern [Kog+22]. While this method

2.3. Fault Models 10

required local code execution, the attack methodology has been carried over
to a remote setting. With Javascript.js [GMM16], it is possible to trigger the
Rowhammer effect on client machines by loading malicious Javascript code from
a website. ThrowHammer [Tat+18] or NetHammer [Lip+20] induce bitflips over
the network interface. With SpyHammer [Oro+22], the Rowhammer effect can
even be used to leak the temperature of the victim’s DRAM module.

While Rowhammer is a new methodology to induce faults in a system,
more classical fault injection techniques can be triggered via software. For
example, Plundervolt [Mur+20], VOLTpwn [Ken+20], or VoltJockey [Qiu+19a;
Qiu+19b; Qiu+20] exploit Dynamic Voltage and Frequency Scaling (DVFS)
to manipulate the voltage of a processor. These attack methodologies modify
the DVFS interface from software with the goal of inducing a fault in the
processor. With this methodology, they are able to break the integrity of
Intel SGX enclaves, leak AES encryption keys of AES-NI or ARM TrustZone, or
break RSA-based authentication from ARM TrustZone. CLKscrew [TSS17],
on the other hand, uses DVFS to manipulate the clock signal and induce faults
in ARM-based Android devices. They use this methodology to extract secret
encryption keys or to escalate privileges and load self-signed code into ARM
TrustZone. In PMFault [CO23], researchers show that it is possible to mount
a remotely controlled fault attack by controlling the PMBus. By exploiting
software weaknesses within the Baseboard Management Controller (BMC), they
are able to control the voltage of the CPU remotely and perform under- and
overvolting attacks. Using this method, they are able to induce faults during an
RSA computation, break the security guarantees of Intel SGX, or even brick the
CPU.

When looking into all these new methodologies, one can observe that they
all target larger application-class processors, even commodity desktop systems.
Typically, these systems haven’t had fault attacks in their threat model, but this
new research shows there is a practical threat.

2.3 Fault Models
A fault model characterizes the effect and impact of a fault injection independently
of the used fault induction method. It, therefore, provides a clear abstraction
between the induction methodologies described in Section 2.1 and Section 2.2
and the actual effect to the system. Such a fault model makes it easier to design
countermeasures, as it specifically describes the attacker’s capabilities. Typically,
a fault model M is described by a set of parameters, including the fault type t,
the locality and precision l, and the timing τ , i.e., M = {t, l, τ}.

Fault Type t. There are different types, which can be categorized in the
following types:

• Stuck-At-Fault: An intermediate signal, a flip flop, or a memory cell is
forced to a specific value. When the signal is forced to the value zero, the

2.4. Fault Exploitation 11

fault is denoted as Stuck-at-Zero or SA0. When the signal is forced to the
value one, the fault is denoted as Stuck-at-One or SA1.

• Bitflip: The value of a signal, flip flop, or memory cell gets inverted.

• Random Fault: A signal, flip flop, or memory cell gets assigned a random
value.

Fault Location and Granularity l. The precision determines at what granu-
larity a fault can be injected, e.g., the attacker can only inject a fault at a single
bit or perform a multi-bit fault injection. It further defines the locality of the
fault, e.g., is the attacker capable of inducing a fault precisely at a specific gate
or register, at a particular subsystem of the chip, or has the attacker no control
over the location.

Fault Timing τ . The timing determines how precise a fault can be injected
in the temporal domain. Depending on the synchronization mechanisms of the
device under attack, the timing may be more precise or not.

Fault Duration tτ . Faults can be categorized as transient, permanent, or
destructive faults. A transient fault only occurs during a single operation, e.g.,
one addition operation of the CPU is disturbed, but the next addition computes
correctly. A permanent fault can happen on registers that a subsequently read,
and its value is used for further computations. If there is a fault there, all
computations are permanently disturbed until a new value is written to the
register or the device is put into reset. A destructive fault permanently modifies
the calculation and does not vanish after resetting.

These fault types described before can apply to specific components of a system,
i.e., with a particular locality. For example, the fault model can specify a random
multi-bit fault on the program counter of a processor, that allows the attacker to
redirect the control-flow.

2.4 Fault Exploitation
Injecting faults into a digital circuit is a powerful threat allowing adversaries to
break the security of a system entirely. Typically, the effect of a fault is modeled
at the bit level with transient bit-flips and permanent stuck-at effects [VKS11].

Injecting a fault, irrespective of the method used, does not necessarily break
or exploit the system. Nevertheless, the research community studied different
applications where faults are dangerous for the overall security. It started with
the well-famous fault attack on the RSA cryptosystem [BDL97] and evolved ever
since. A single fault during the computation is enough to recover the private key
and break the security.

2.4. Fault Exploitation 12

2.4.1 Fault Attacks on Cryptographic Implementations
In the past, cryptographic algorithms were a traditional target of fault attacks.
Boneh et al. identified a vulnerability in the RSA cryptosystem [BDL97], where a
pair of valid and faulty signatures are enough to reveal all the private information.
Attack methods also evolved for symmetric cryptographic primitives. Biham
and Shamir [BS97] developed a method technique Differential Fault Analysis
(DFA) to reveal the private encryption key for the DES cipher, which emerged in
its own field of research. This approach was applied to many other symmetric
ciphers [AMT13; BGN05; CY03; SBM15; TMA11]. These attacks solely analyze
the correct and faulty computations and then are able to recompute the secret
encryption key.

Later on, research developed different strategies to exploit faults in crypto-
graphic implementations. This research has led to the development of attack
methodologies such as Fault Sensitivity Analysis (FSA) [Li+10], Differential Fault
Intensity Analysis (DFIA) [Gha+14], Statistical Fault attacks (SFA) [Fuh+13],
or Statistical Ineffective Fault Attacks (SIFA) [Dob+18]. The broad research
on this topic shows that fault attacks pose a serious threat to various different
cryptographic implementations in practice.

2.4.2 Exploiting Faults on Non-Cryptographic Software
While previous works focused on the exploitation of faults in cryptographic
implementations, faults are also a threat to general-purpose software. As discussed
previously, faults can effectively be used to skip instructions, redirect the control-
flow, or manipulate the data. Consequently, these effects can seriously affect
the system’s security. By inducing targeted faults into the program counter of a
processor, faults enable an adversary to arbitrarily hijack the control-flow of a
program [NT; TM17; TSW16].

One prominent target of fault attacks in the context of non-cryptographic
software is secure boot. Different fault injection methodologies are used to
compromise the boot process of various architectures. For example, voltage
glitching on ARM-based architectures [Her+21; TS16] bypasses this first layer of
security. This has been extended to also use electromagnetic fault injection [CH17]
or even laser fault injection [Vas+20]. Vasselle et al. [Vas+20] perform laser
fault injection on a large application-class SoC of an Android phone to bypass
secure boot.

Typically, faults are used to break the security of a device, for example,
to break dedicated security defenses. For example, [SMS23] uses voltage fault
injection to break the security of ARM TrustZone-M, a Trusted Execution
Environment (TEE) for embedded ARM processors.

With the rise of computing power, the automotive area also becomes a tar-
get of fault attacks, especially Electronic Control Units (ECUs). For example,
in [WP17], fault attacks are used to attack Automotive Safety Integrity Level
(ASIL) certified processors. While the safety mechanisms in those processors
increase the complexity of fault attacks, they do not prevent them. Further-

2.5. Countermeasures Against Fault Attacks 13

more, electromagnetic fault injection is used to attack recent processor cores of
ECUs [OFl20]. Faults are also used to attack the diagnostic protocols of these
systems [PC18]. In [NT], voltage glitching is used to attack the AUTOSAR
operating system, which is widely used on many ECUs. Within their exploit,
they are able to reach arbitrary code execution by causing an attacker-controlled
value to be loaded in the program counter of the processor.

Fault attacks also pose a threat to devices used in the financial sector. While
smartcards have dedicated countermeasures against faults, voltage glitching is,
for example, used to attack the Trezor hardware Bitcoin wallet [RND19] to
retrieve the private key of the device. In other attacks, the operating system
of a smart card was faulted [AK] in order to get access to a Pay-TV service.
Furthermore, fault attacks were used to exploit the bootloader of the Xbox360
gaming console [Fre11] to be able to run counterfeit software on the gaming device.
More recently, the Apple AirTag – a Bluetooth beacon that connects to the Apple
networks – was jailbroken via a fault attack on the included microprocessor [sta21].
By exploiting a fault, researchers could jailbreak the device, dump the firmware,
and upload custom software.

As discussed in Section 2.1 and Section 2.2, new attack methodologies enable
fault attacks also for larger systems, e.g., desktop and server-class processors.
In their proof-of-concept exploits, they attack the TEEs of the host processor,
which often processes sensitive data or performs critical operations. Exploits
show they are able to extract sensitive data, decrypt protected memory, or leak
encryption keys from a trusted and protected environment. Summing up, these
exploits show that fault attacks also pose a serious threat to non-cryptographic
applications that are even running on larger systems.

2.5 Countermeasures Against Fault Attacks
In the physical domain, there exist sensor-based approaches to detect fault injec-
tion at the chip level [HBB16; Mut+22]. Such sensors aim to detect unintended
manipulations of certain signals or properties, e.g., the power supply or clock
signal. In case of a fault, the system can react adequately depending on its
escalation policy. However, these mechanisms are outside the focus of this thesis.

In the digital domain, redundancy is required to defend systems against fault
attacks effectively. Thus, it is necessary to implement dedicated countermeasures,
which include a variety of techniques, such as the use of redundant components
or systems, error detection, and correction algorithms. Countermeasures can
either be implemented in software or hardware and have different trade-offs.
One fundamental property that all of these countermeasures have in common
is redundancy. By introducing redundant elements into a system, it becomes
possible to detect errors or faults that may be introduced by an attacker or even
correct them. Redundancy can be added using different mechanisms, but there
are generally two forms.

2.5. Countermeasures Against Fault Attacks 14

Spatial Redundancy

For countermeasures that are based on spatial redundancy, the systems exploit
redundancy in the spatial domain. A classic example of protecting data with
this approach are Error Detection Codes (EDCs), where data is either encoded
or concatenated with certain bits of redundancy. These additional bits allow
the system to detect up to a certain amount of bitflips in the original data.
More advanced encoding schemes even support the correction of bitflips, which
is prominently used for server-class memory in ECC RAM. Different schemes
support binary or arithmetic operations directly in the encoded domain extending
their scope of protection also for the computation of data. We will discuss different
encoding schemes in Section 2.5.2 that are later in this thesis exploited in concrete
designs in Chapter 7, Chapter 8, and Chapter 9.

Temporal Redundancy

The second form is temporal redundancy, where the redundant behavior is
performed in the time dimension, i.e., the same operation is performed twice or
multiple times. Only if all operations yield the same result the computation is
considered genuine without manipulation. If the operation is executed more than
two times, Triple Modular Redundancy (TMR) can also be applied to temporal
redundancy to provide error correction. Both approaches can be implemented
both in hardware and software with different trade-offs.

Protection of Cryptographic Algorithms

To counteract fault attacks on cryptographic implementations, research has
developed dedicated countermeasures that are specifically tailored for certain
cryptographic algorithms [RG14]. To protect the AES block cipher, they compute
a parity of the data at the beginning of one encryption round. In the following,
they also compute the parity then over the linear and non-linear parts of the
cipher. In the end, they perform a parity check [MSY06] to match the parity
of the output data with the computed parity over the cipher round. While this
approach increases the security, it is susceptible to multi-bit faults, as there is
only one parity bit, and its code is a linear function. To improve the security,
more advanced countermeasures use multi-bit parity codes with a non-linear
function.

There also exist several proposals for countermeasures for different crypto-
graphic schemes [Bou+12; Kis+16; KQ07; MSY06]. These countermeasures
are mostly specifically tailored to a specific cryptographic algorithm, thus not
generic. New fault attacks on different algorithms may require new methods for
protection. In the following, we discuss generic error detection codes that apply
to many applications.

2.5. Countermeasures Against Fault Attacks 15

2.5.1 Duplication-Based Countermeasures
Instruction duplication is the simplest form of redundancy as it is generic and
applicable to many different areas. In practice, duplication-based approaches exist
in software and hardware and form temporal- or spatial-based countermeasures.

Instruction Duplication

Duplicating instructions or modular redundancy has been shown to be a generic
countermeasure to protect arbitrary software against fault attacks [Bar+10b].
After duplicating an instruction, a check sequence is inserted into the code
that errors if both computations differ, thus forming a temporal protection
scheme. Conditional branches are protected by replicating the branch multiple
times, resulting in a comparison tree. Only if all comparisons yield the same
result the conditional branch is considered to be genuine. While such a scheme
improves the security, inducing the same fault multiple times can bypass the
protection. Barry et al. [BCR16] automate the process of duplication with the
help of a compiler, such that duplicated instructions always write the same
register and do not perform any check operations. However, they only assume
a limited instruction skip fault model and do not consider faults in data or the
computation.

Duplication can also be performed on different granularity at the software
level. For example, a certain function can be called twice or even three times, and
then the result is compared. In the case of three executions, one error can even
be corrected, yielding a classical TMR protection scheme. To bring in diversity,
the implementations of the called function may differ but implement the same
specification.

Duplicating instructions is not only suitable for generic software; it is also appli-
cable to cryptographic implementations. For example, Barenghi et al. [Bar+10a]
perform instruction duplication with subsequent checks, i.e., one operation ex-
pands to four (including the comparison and branch for the error case), protecting
against single errors. They extend their scheme to perform instruction triplication
to even perform single-error correction or double-error detection. By selectively
applying their countermeasure to cryptographic implementations, i.e., they only
protect the last three rounds, they yield overheads between 83 – 330 %.

Spatial protection, in the form of parallel instruction execution, can also be
implemented in software. Single Instruction Multiple Data (SIMD) instructions
perform the same operation on multiple parts of one data word, e.g., four 8-
bit additions performed on a 32-bit data word. While these instructions are
traditionally used for data processing, they can also be used to perform redundant
computing in the context of fault attacks. By executing the same data in parallel
data streams followed by comparisons, arbitrary software can be protected against
faults [Che+17; Che18; Lac+18]. However, these approaches are limited by the
available SIMD instruction and their precision, e.g., they only support 8-bit or
16-bit computation.

2.5. Countermeasures Against Fault Attacks 16

Circuit Duplication

Duplication or replication is also applicable to hardware implementations. Here
the logic and/or flip-flop elements are replicated with comparison and/or voting
elements at the end, thus providing spatial protection Synthesis tools such as
Synopsys Synplify [Syn23] can automate this process and automatically generate
TMR for specified hardware. These tools can automatically insert TMR on
different granularities, i.e., they replicate the hardware on the logic- or block-
levels for annotated modules.

Spatial redundancy can also be implemented at the algorithmic level, e.g., in
hardware, where a circuit is replicated twice or multiple times. The operation is
then performed independently on all circuits in lock-step, and their results are
compared to see if they match, thus being able to detect a fault. This concept
is, for example, used in the OpenTitan [Ope23b] project, where the internal
processor is duplicated. The second core operates lock-step with a random delay
of a few cycles to provide the necessary error detection capabilities. If the circuit
is replicated more than two times, it even supports error correction, i.e., TMR.
For example, in the commercial TriCore architecture from Infineon [Inf23], two
cores can operate in lock-step, and checks are performed in between. They use
this configuration mainly for safety-critical applications in the automotive area.

Inverse Computation

Concurrent error detection, such as used to enhance the reliability of devices, is
used to implement spatial redundancy. One approach of a countermeasure aims
to generically protect encryption/decryption schemes [Kar+02]. First, the input
of a computation is first buffered in a dedicated register. After encrypting the
data, the result gets decrypted again, which must yield the original input data
again. By using two different computations, i.e., encryption and decryption, this
countermeasure also adds diversity on top of redundancy.

A similar approach can be used for involution ciphers [JWK04], which have
the property x = F (F (x)) on the encryption or on inside components. Then after
performing a cryptographic operation, e.g., one round of computation, the result
is taken, and by exploiting the involution property, the input data is recomputed.
Finally, the result is compared with the buffered input data, and an error is
raised if the data mismatches.

2.5.2 Error Detection Codes
To counteract fault attacks and to protect data against unwanted manipulations,
Error Detection Codes (EDCs) [Bro60; Pet; WKK09] are a long-established
and well-studied research field. Their principle is to encode the data and add
additional redundancy bits such that unwanted manipulations can be detected.
While initially being developed to protect data during storage or transmission in
harsh environments, more advanced EDCs even support computation directly
on encoded data. Such an encoding scheme has two advantages: First, it omits

2.5. Countermeasures Against Fault Attacks 17

the necessity of decoding the data, which significantly improves the runtime
performance when operating with encoded data. More importantly, it provides
end-to-end protection of data throughout computation since the system never
uses plain unencoded data. In the following sections, we discuss different encoding
schemes and show their advantages and disadvantages.

A binary block encoding scheme uses code words of n-bit length to represent
datawords of length k, with k < n. The append r = n − k bits provide the
redundancy properties for the encoding scheme. Typically, binary block codes
are denoted as [n,k]- or [n,k,D]-codes, where D denotes the minimum pairwise
Hamming distance between all code words. If all bits of the dataword are
embedded in the code word, we denote it as a systematic code. One advantage
of such a code is that the dataword is always visible without needing to decode
the code word. Consequently, in non-systematic codes, the data and redundancy
parts are mixed up and require a dedicated decoding operation to retrieve the
dataword again. A systematic code may separate the operations on the data-
and redundancy part, thus, forming a separable code. If there is only a single
computation performed on the combined data and redundancy, the code is called
non-separable.

Binary Linear Codes

One example of an encoding scheme that supports computation in the encoded
domain are binary linear codes [Ham50], which are defined by its k×n generator
matrix G. For systematic linear codes using the Galois Field GF(2), the generator
matrix has the form [I|P], where I is a k × k identity matrix, and P is the
k × r parity matrix. To encode data to the binary linear code, a left-side
multiplication with the generator matrix G is performed. Decoding is done
by a right-multiplication of the code word with the code-specific parity matrix
that can be computed out of the generator matrix. For binary linear codes, the
parity matrix is defined by H = [PT |I]. The result of that multiplication is the
syndrome s, which is always zero if the code word was error free. However, if
the code word includes an error (up to the Hamming distance of the code), the
syndrome s becomes a different value than zero.

From the linearity property of this encoding scheme follows that the sum of
code words again yields a valid code word. In the Galois Field GF(2), the sum is
equal to the XOR operation; thus, binary linear codes are closed under XOR.
Binary linear codes also support the AND operation, but it requires specific
correction terms to compute the result. Furthermore, these codes only preserve
the error detection capabilities if only one operand is affected by a fault.

ECC Memory. One prominent use case of binary linear codes is ECC memory,
specially designed for server-class or industrial control applications. Here, the
RAM module contains dedicated memory chips that store the error-correcting
codes for the data. Typically, these memory modules use a Single-Error Correction
and Double-Error Detection (SECDED) Hamming code, which gets computed
and checked by the memory controller of the system. This encoding scheme

2.5. Countermeasures Against Fault Attacks 18

supports the detection of up to two bitflips and the correction of even a single-bit
error.

AN(BD)-Codes

One example of arithmetic codes are so-called AN-codes [Bro60; For], which
encoding step is defined in Equation (2.1). A multiplication between the functional
value n and the encoding constant A forms the code word nc. Note the subscript
c denotes the encoded value.

nc = A · n (2.1)

Using this multiplication, only multiples of the encoding constant A are valid
code words; everything in between correlates to an invalid value. By multiplying
the data with the encoding constant, the redundancy information is bound to
the code word and cannot be separated. Thus it forms a non-systematic and
non-separable encoding scheme.

The redundancy properties of the AN-code are defined by the encoding
constant A. The minimum Hamming distance between all code words gives a
quantitative measure of how strong the chosen encoding constant is. Note that
AN-codes limit the functional value to be less than the encoding constant to
preserve the error detection capabilities.

To verify if the code word is valid, a modulo operation with the encoding
constant is performed as defined in Equation (2.2). For a valid AN-code, this
remainder must be zero. To decode the code word and retrieve the original data,
an integer division with the encoding constant A is performed.

0 ≡ nc mod A (2.2)

AN-codes limit the functional value to be less than A to preserve the error
detection capabilities. The encoding constant is chosen by the designer and
defines the redundancy properties of the code. The minimum Hamming distance
between the code words gives a quantitative measure of how strong the selected
A is. Finding a good A so far is limited by exhaustive search [MS09], but good
encoding constants have already been found. Hoffmann et al. [Hof+14] call
these constants so-called Super As because their minimum Hamming distance is
maximal for a given word width. Furthermore, also other parameters, such as
the maximum data size of the system, influence the selection.

AN-codes are arithmetic codes and, therefore, also support encoded process-
ing [For] for certain arithmetic operations. Since AN-codes are closed under
addition and subtraction, which is shown in Equation (2.3), these operations
do not require any modification. Other operations, such as multiplication and
division, require special correction terms but are supported.

2.5. Countermeasures Against Fault Attacks 19

zc = xc + yc (2.3)
= A · x + A · y
= A · (x + y)
= A · z

Fetzer et al. [FSS09] use this encoding scheme to build an AN-code LLVM
compiler, which transforms all operations to the domain of AN-codes, to protect
the data processing. Unfortunately, even plain AN-codes already add slowdowns
of a factor of 30, thus limiting its practical application.

Unfortunately, AN-codes can only protect the arithmetic operations, but they
do not protect the memory access of the data. Forin and Schiffel et al. [For;
Sch+10] extend simple AN-codes by assigning a variable-dependent signature
Bx to each encoded variable xc, forming a so-called ANB-code. This yields the
encoding formula as shown in Equation (2.4). Note that the variable-dependent
signature Bx must be less than the encoding constant A.

xc = A · x + Bx (2.4)

By adding the variable-dependent signature Bx to the AN-code, the AN-code
property that all encoded values are a multiple of A is intentionally destroyed.
Since Bx is less than A, decoding works the same as for normal AN-codes using
an integer division. A check is also performed using a modulo operation with
the encoding constant, which now must yield the signature Bx. Schiffel et al.
automated this process and developed a compiler toolchain to keep track of all
assigned signatures and to insert the correct check operations. By assigning a
variable-dependent signature to the code words, a wrong memory access can be
detected, as long as signatures do not cancel out due to arithmetic. However,
using this encoding scheme in practice is challenging. First, ANB-codes have
a significant overhead of around 90 % on average on top of ordinary AN-codes.
Second, the signature Bx must be less than the encoding constant A, limiting
the number of variables that can be protected. Furthermore, every location in
memory requires a different signature, which is not practical.

Forin et al. even extended their encoding scheme further to detect outdated
uses of a variable. They introduce a timestamp D to the code word that counts
the variable updates, yielding the so-called ANBD-code. This yields the encoding
formula as shown in Equation (2.5).

xc = A · x + Bx + D (2.5)

To verify the correctness of a variable, the variable-dependent signature Bx

and the timestamp D need to be known. ANBD-codes are expensive in both
code and runtime overhead. On average, they slow down the program by a factor
of 150 [Sch+10]. Therefore, this encoding scheme can only be used selectively to
protect certain regions of a program.

2.5. Countermeasures Against Fault Attacks 20

Residue Codes

Residue codes [Mas64] form a different class of arithmetic codes. In this encoding
scheme, a code word xc is defined by concatenating the data with its residue
xc = (x, rx = M |x). Here, x denotes the payload data, and rx is the redundancy
part, the residue. The residue is computed as the remainder with respect to a
modulus M , which defines the redundancy properties. Due to this concatenation,
the tuple of data and residue are separable, on which independent operations are
performed. Therefore, such an encoding scheme forms a systematic and separable
encoding scheme.

This property allows the system to easily access the payload data without
expensive decoding operations. Although the modulus M defines the robustness
of this code, a simple bitflip on the data and on the modulus can create a
new valid code word. Thus, the Hamming distance between two simple residue
encoded code words is only 2.

To scale the robustness of residue codes, and to yield a higher Hamming
distance, the number of residues can be increased, forming a multi-residue
code [Rao70; RG71]. The modulus M is now defined by M = {m0, . . . , mn},
where mi is the actual modulus for one residue and n is the number of residues.
Similar to AN-codes, finding a good set of moduli is a challenging task and is
currently only possible via exhaustive search but in a more efficient way [MS09].
Since (multi)-residue codes are arithmetic codes, they also natively support
certain arithmetic operations within the encoded domain. Here, the arithmetic
operations are performed both on the functional data part and on the residue
value. Equation (2.6) shows the arithmetic addition operation performed on
multi-residue encoded data. First, the addition is performed on the plain payload
data. Second, the addition is performed on every residue independently, followed
by a modular reduction with the corresponding moduli mi.

zc = xc + yc (2.6)
= (x + y,∀i : mi| (ri,x + ri,y))

Similar to the addition, residue codes also support subtractions as shown in
Equation (2.7).

zc = xc − yc (2.7)
= (x− y,∀i : mi| (ri,x − ri,y))

Residue codes also support protecting the multiplication operation. How-
ever, for the work in Chapter 8 and Chapter 9, we only require additions and
subtractions.

2.5.3 Fresh Re-keying to Counteract Fault Attacks
The probability for a key recovery via Differential Power Analysis (DPA) to
be successful rises with the number of side-channel observations for different

2.5. Countermeasures Against Fault Attacks 21

c E/DgnK pk*
Figure 2.1: Re-keying g function combined with an encryption/decryption primitive.

inputs under the same key K. Therefore, one approach to counteract DPA is
frequent re-keying [Koc03; Med+10], where the goal is to design a cryptographic
scheme such that for a certain key K, the number of different inputs to the
underlying cryptographic primitive is upper-bounded by some small number q
(q-limiting [Sta+10]). As soon as the limit of q different inputs is reached, another
key K ′ is selected, which limits the data complexity per single key K. Thus,
for a certain key K, the cryptographic implementation can only generate the
side-channel leakage for q different inputs, which effectively limits the feasibility
of DPA to recover K. As a result, the implementation of the cryptographic
primitive is only required to resist Simple Power Analysis (SPA) attacks. By
always using a new encryption key, no encryption is performed twice with the
same key, thus also providing DFA security by design at the algorithmic level.

Always using a fresh key is expensive in terms of secure storage, key exchange,
and other factors. Therefore, re-keying schemes have been developed that take a
secret master key and a fresh value that is typically not secret to compute a fresh
intermediate session key. In Figure 2.1, we show such a scheme, where a re-keying
function g is combined with an encryption or decryption primitive. The re-keying
function g uses a secret master key K and a fresh public nonce n as the input to
compute the single-used session k∗. For every encryption, the re-keying function
then computes a fresh session key k∗, which is only used once and is different
for every encryption or decryption operation. However, this approach shifts the
burden of DPA protection from the cipher to the re-keying function. Since the
re-keying function is much easier in complexity, traditional protection schemes
such as masking [AG03; GP99] or shuffling [Vey+12] are applicable with less
overhead. This approach also mitigates DFA attacks on the encryption primitive
by design. By always using a fresh nonce, and therefore using a fresh session
key k∗ for the encryption or decryption operation, an attacker cannot observer
a faulty and non-faulty encryption output, which is necessary to mount a DFA
attack. This mitigation strategy is vastly different compared to redundancy-based
approaches, as it protects the cipher on the algorithmic level by extending the
mode of operation. While shuffling the operations is primarily used to increase
the complexity of side-channel attacks, it also increases the complexity of fault
attacks. Due to the random sequence of operations, precise fault injection is not
possible anymore, thus reducing the probability of successful attacks. However,
it depends on the concrete attack and their required fault granularity if shuffling
increases the protection. Masking generally does not increase the protection level

2.5. Countermeasures Against Fault Attacks 22

in terms of faults [BH08].
There are several suitable designs for the re-keying function g : (K, n) 7→ k∗

available. One prominent way is to build g such that it is easy to protect with
classical countermeasures such as masking or shuffling. Medwed et al. [Med+10]
propose a polynomial multiplication in a finite field of the key master key K
and a nonce n that fulfills those properties and is easy to protect. However, as
pointed out in [Bel+15; BFG14; Dob+14; GJ16; Med+11; PM16], the algebraic
structure of a multiplication opens the door to combined attacks on g and the
encryption. To mitigate this type of attack, Dobraunig et al. proposed to add a
block-cipher-based feed-forward computation [Dob+15] after the multiplication,
which we further detail in Section 4.1.4.

Another approach for designing a secure re-keying function is exploiting
a GGM construction [GGM86] as proposed in [FPS12; Sta+10]. The GGM
construction is a tree-like approach to mix a secret K with a public n, where
on each tree level, exactly one bit of the public n is evaluated. Starting with
s0 = K, the key si+1 is computed by encrypting one of two predefined plaintexts
p0 or p1 ,with the key si and block cipher E, depending on the i-th bit of n.
The output of the last level is then, after post-processing, used as the session
key k∗. GGM-based re-keying is 2-limiting and hence considered to be secure
against DPA. As a variant, [Dob+17] presents the sponge version of GGM-based
re-keying, IsapRk, which we further detail in Section 4.2.

3
Control-Flow, Control-Flow Attacks, and

Control-Flow Integrity

The control-flow of a program refers to the order in which all instructions of
a program are executed. It determines the path the program takes from the
beginning to the end of its execution. We generally differentiate between strictly
linear or sequential instructions, e.g., arithmetic operations that do not actively
manipulate the control-flow, and dedicated control-flow instructions like branches
or jumps. These instructions actively change the program counter of the processor
to an arbitrary location, thus affecting the control-flow.

Conditional branches fall into a special category of instructions since, at this
point, data merges with the control-flow, or in other words, the application data
modifies the control-flow. Depending on the outcome of a previous comparison
operation, the branch is executed and jumps to a different location. If the
comparison is false, the subsequent instruction gets executed. Conditional
branches can either be implemented with a separate comparison and branch
instruction, like in the ARMv8 [ARM20] architecture. In such architectures, the
comparison instruction modifies a CPU flag that the actual branch instruction uses
to decide if the branch should be taken. On the other hand, RISC-V [Wat+14]
defines a single combined compare and branch instruction in their Instruction
Set Architecture (ISA).

The code of a program is laid out in segments that only contain zero to many
strictly sequential instructions followed by at least one control-flow instruction.
These segments are denoted as basic blocks. The control-flow instructions at the
end of a basic block connect the different basic blocks of the program, forming
the Control-Flow Graph (CFG). The nodes or basic blocks of this graph are
direct edges and denote the control-flow transfers. Figure 3.1 shows a CFG with

23

3.1. Control-Flow Attacks 24

Figure 3.1: CFG showing basic blocks with ARMv8 instructions.

different basic blocks, direct, and conditional branches with instructions from
the ARMv8 ISA [ARM20].

3.1 Control-Flow Attacks
In a control-flow attack, the adversary hijacks the program’s control-flow to
redirect it to a different location. Depending on the origin of the hijack, we
differentiate between software- and fault-based control-flow attacks.

3.1.1 Software-Based Control-Flow Attacks
In a software-based control-flow attack, the adversary exploits a memory bug
and overwrites code- or data pointers. Successful control-flow attacks use the
return address [Sha07], jumps addresses [Che+10], or data pointers [Hu+16].
This attack allows the attacker to arbitrarily switch locations within the program
when executing a hijacked code pointer. However, in the software setting, the
attacker’s possibility to hijack the control-flow is by overwriting a code pointer
that is later jumped to.

3.1.2 Fault-Based Control-Flow Attacks
Although faults can be used to attack the same control-flow data, i.e., return
addresses, code- or data pointers, faults increase the attack surface. While in a
software-based control-flow attack, the adversary is limited by the exploitability
of the underlying memory vulnerability, faults allow to hijack the control-flow
arbitrarily and at a much finer granularity. Fault-based control-flow attacks can
corrupt [LG19] or skip instructions [Blö+14], change the program counter [NT;

3.2. Control-Flow Integrity 25

TM17; TSW16], or modify addresses used by indirect or direct calls in registers,
memory, or the code segment [Mor+13; TBC19]. These attacks target the control-
flow within (intra) or over (inter) a basic block, i.e., consecutive instructions
without control-flow. While intra-basic block attacks allow the attacker to
skip/manipulate individual instructions in a basic block, inter-basic block attacks
enable the attacker to redirect the control-flow to an arbitrary code position by
corrupting the addresses of branches/calls.

3.2 Control-Flow Integrity
To protect a program from intra/inter-basic block control-flow attacks, enforc-
ing Control-Flow Integrity (CFI) has shown to be an effective and generic
defense [Aba+05]. Existing software-based CFI protection schemes provide dif-
ferent enforcement granularities and either addresses a software or fault attacker
but not both. Although there are schemes addressing both threats, they require
intrusive hardware changes, which are not feasible for commodity systems.

3.2.1 Software CFI Protection Schemes
Software CFI (SCFI) [Aba+05] protects the program against software-based
control-flow attacks while not denoting how it is implemented, i.e., in software or
hardware. Such a countermeasure enforces the CFG extracted at compile-time
by dynamically protecting a subset of inter-basic block control-flow transfers at
runtime. This coarse-grained CFI policy only protects indirect calls or returns, as
they are the only targets of a memory vulnerability. The CFI instrumentation is
either inserted during the compilation [Tic+14] or on the complete binary [ZS13].

To improve the performance of such countermeasures and to make the deploy-
ment more practical, the CFI policy was gradually relaxed. CPI [Eva+15] and
CCFI [Mas+15] protect a broad range of forward- and backward-edges of the
program by maintaining the integrity of code-pointers. PARTS [Lil+19] protects
code-pointers by signing and verifying them using ARM Pointer Authentication
before using them. When using a signed code-pointer on an indirect call, for
example, the blraa instruction first verifies the integrity of the signed target
address before taking the branch. If the verification fails, i.e., the Pointer Au-
thentication Code (PAC) does not match the expected PAC, the application
traps and aborts. PACStack [Lil+21] protects return addresses on the stack by
utilizing ARM Pointer Authentication (ARM PA) to cryptographically link and
verify them.

3.2.2 Fault CFI Protection Schemes
Fault CFI (FCFI) protects against fault-based control-flow attacks, thus providing
protection on a much finer granularity. Such protection schemes can either be
implemented in software or with hardware support. FCFI protection schemes
capable of detecting intra-basic block control-flow hijacks, e.g., instruction skips,

3.2. Control-Flow Integrity 26

employ a global CFI state. This state gets updated with the execution of each
instruction, i.e., the CFI granularity. Maintaining and checking a state at this
granularity is expensive, so these schemes require hardware changes [Cle+17;
Sug11; Sul+17; Wer+18; WWM15]. As this is not possible for commodity devices,
software-based FCFI protection schemes provide a trade-off between security and
performance by protecting all control-flow transitions between basic blocks, hence,
providing inter-basic block CFI. In CFCSS [OSM02] and SWIFT [Rei+05], each
basic block is assigned a signature to update a global CFI state. When entering
the basic block, the global control-flow state is updated with this signature and
is compared to match the expected state at this location.

Algorithm 1 CFI state update function.
1: function Update(S, SigBB)
2: r1 ← SigBB

3: S ← S ⊕ r1
4: end function

Algorithm 1 shows an XOR-based CFI state update function, as used in
CFCSS [OSM02], where a global CFI state S is XORed with the basic block
signature SigBB . At specific program locations, checks are included, comparing
the CFI state to the expected value to detect control-flow deviations. This
approach of CFCSS yields a runtime overhead between 107–426 % [Gol+03].
ACFC [VHM03] reduces the performance penalty down to 47 % by decreasing
the checking precision and thereby reducing the security guarantees. Other
approaches [HLB19; LHB14] annotate the source code with counter increment
and verification macros to detect control-flow deviations. However, a protection
scheme requiring manual source code modifications is not practical. It cannot
easily protect legacy code, making a large-scale deployment hard.

4
Energy-Efficient Encryption with

Algorithmic Fault Protection of IoT
End-Nodes

Cryptography is a fundamental aspect of modern information security and is cru-
cial in protecting various assets during computation, storage, and communication.
Especially with the rise of the Internet-of-Things (IoT), where many devices are
connected over the network, and vast amounts of data need to be stored and
transmitted, efficient protection is necessary. Cryptography provides means to
achieve these goals to provide security for data at any stage of the device. By
utilizing cryptographic techniques, sensitive information can be shielded from
unauthorized access, ensuring confidentiality, integrity, or authentication.

As discussed in Chapter 2, cryptographic algorithms can be attacked using
faults. Especially if devices are deployed in hostile environments, as it is the
case for the IoT, this threat becomes much more prominent. Consequently, the
cryptographic algorithms on such exposed devices require dedicated protection
mechanisms against fault attacks.

Devices in the IoT do not only face requirements from the security perspective.
The device stack of the IoT ranges from cloud solutions to IoT gateways down
to IoT end-nodes, which form the smallest class of devices. Since IoT end-nodes
must work within a tiny power envelope, this fact introduces a significant limit
on the volume of data that can be processed and transmitted. To address this
limiting factor, near-sensor smart data analytics, directly on the IoT end-node,
is a promising direction.

Addressing the requirements regarding of power and energy, as well as protec-
tion against physical attacks, is a challenging topic nowadays, more important

27

28

than ever. Adding dedicated countermeasures against physical attacks increases
power consumption and limits the applications of such IoT end-nodes. One
promising direction is the combination of re-keying, as discussed in Section 2.5.3,
combined with a leakage-resilient encryption primitive that protects against
fault attacks at the algorithmic level. However, currently, there is no public
research that practically shows the suitability of such schemes in the setting of
IoT end-nodes with a limited power and energy budget. Consequently, it requires
concrete hardware implementations and thorough evaluations in suitable use
cases to prove its relevance for IoT end-nodes.

Contribution
In this chapter, we propose HWCRYPT, a highly efficient hardware crypto-
graphic engine for fault- and side-channel secure encryption modes. The crypto-
graphic hardware accelerator provides fault- and side-channel secure encryption
primitives that are protected at the algorithmic level rather than employing
traditional countermeasures such as redundancy. HWCRYPT is integrated into
the 65 nm Fulmine secure data analytics System-on-Chip (SoC), which tackles the
two main limiting factors of IoT end-nodes while providing full programmability,
low-effort data exchange between processing engines, (sufficiently) high speed,
and low-energy. The SoC is based on the architectural paradigm of tightly-
coupled heterogeneous shared-memory clusters [Con+14], where several engines,
which can be either programmable cores or specialized hardware accelerators,
share the same first-level scratchpad via a low-latency interconnect. In Fulmine,
the engines are four enhanced 32-bit OpenRISC cores, HWCRYPT, the highly
efficient cryptographic engine for fault- and side-channel secure encryption, and
one multi-precision convolution engine specialized for Convolutional Neural Net-
works (CNN) computations. Due to their memory-sharing mechanism, cores and
accelerators can exchange data in a flexible and efficient way, removing the need
for continuous copies between cores and accelerators. The proposed SoC performs
computationally intensive data analytics workloads with no compromise in terms
of security and privacy, thanks to the embedded encryption engine. At the same
time, Fulmine executes cryptographic operations, full complex pipelines includ-
ing CNN-based analytics, and other arbitrary tasks executed on the processors.
Summarized, our contributions are:

• We present an energy-efficient cryptographic hardware accelerator with
fault side-channel protection at the algorithmic level.

• We tightly integrate the hardware accelerator into the memory hierarchy of
a multi-core SoC. We present Fulmine, a 65 nm secure data analytics SoC,
which is designed to be an energy-efficient IoT end-node.

• We extensively evaluate the accelerator on isolated benchmarks and develop
and evaluate different use cases of the implementation.

29

Scientific Contribution

Chapter 4 is primarily based on two publications and builds upon my
master’s thesis, where I developed and implemented a cryptographic
accelerator of Fulmine. While the chip design was done during the
master’s thesis, we received the sample chips at the start of the PhD. As
a follow-up of the master thesis and at the beginning of my PhD studies,
we characterized the chip, evaluated the efficiency and performance in
isolated benchmarks, and developed fully integrated end-to-end use case
applications. These evaluations led to two publications that are included
in this thesis.

The first paper was published IEEE Transactions on Circuits and Systems
I, and received the IEEE Transactions on Circuits and Systems Darlington
Best Paper Award:

Francesco Conti, Robert Schilling, Pasquale Davide Schiavone, Antonio
Pullini, Davide Rossi, Frank Kagan Gürkaynak, Michael Muehlberghuber,
Michael Gautschi, Igor Loi, Germain Haugou, Stefan Mangard, and Luca
Benini. “An IoT Endpoint System-on-Chip for Secure and Energy-Efficient
Near-Sensor Analytics.” In: IEEE Trans. Circuits Syst. I Regul. Pap.
64-I (2017), pp. 2481–2494. doi: 10.1109/TCSI.2017.2698019

I am one of the main authors of this paper, besides Francesco Conti who
developed the convolutional accelerator of Fulmine. Pasquale Davide
Schiavone contributed to the Single Instruction Multiple Data (SIMD)
instructions of the core. Antonio Pullini contributed to the uDMA engine
of the chip. Michael Gautschi contributed to the uncore part of the
chip. Davide Rossi and Igor Loi contributed to the backend design of
the chip. Germain Haugou provided the software-development kit to
program the chip. Frank K. Gürkaynak and Michael Muehlberghuber
were my supervisors during my master’s thesis at ETH Zurich. Stefan
Mangard and Luca Benini supported this work in many discussions and
gave feedback to the paper.

https://doi.org/10.1109/TCSI.2017.2698019

4.1. Background 30

Scientific Contribution

The second paper was presented at DATE 2018 in Dresden (Germany).

Robert Schilling, Thomas Unterluggauer, Stefan Mangard, Frank K.
Gürkaynak, Michael Muehlberghuber, and Luca Benini. “High speed ASIC
implementations of leakage-resilient cryptography.” In: 2018 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2018,
Dresden, Germany, March 19-23, 2018. IEEE, 2018, pp. 1259–1264. doi:
10.23919/DATE.2018.8342208

I am the primary author of this paper that conceptionally introduces
the cryptographic hardware architecture of HWCRYPT. All evaluations
and the development of the use case applications happened during the
PhD studies. Thomas Unterluggauer contributed to the text of this
paper, and Stefan Mangard supported this work in many discussions and
contributed text to the introduction of this paper. Frank K. Gürkaynak,
Michael Muehlberghuber, and Luca Benini were my supervisors during
my master’s thesis at ETH Zurich.

Outline
The remainder of this chapter is organized as follows: Section 4.1 discusses the
threat model of this work, then the requirements for modern IoT end-nodes, and
finally presents the two encryption modes with fault security at the algorithmic
level. Section 4.3 describes the architecture of the SoC, and the cluster-coupled
hardware coprocessors are detailed in Section 4.4. Section 4.5 evaluates the
implementation results and overall performance of the design, while Section 4.6
focuses on real-world use cases. In Section 4.7, we compare Fulmine with the
state-of-the-art in low-power IoT end-nodes. Finally, Section 4.8 concludes the
chapter.

4.1 Background
In this section, we first introduce the threat model of this work and then present
the requirements of IoT end-nodes with respect to energy efficiency and security.
We then present two encryption modes that we integrate into the hardware
accelerator. Both encryption schemes protect against Differential Fault Analysis
(DFA) and Differential Power Analysis (DPA) at the algorithmic level.

4.1.1 Threat Model
In this work, we assume a powerful attacker that is capable of inducing faults
in the cryptographic subsystem of an IoT end-node. This assumption results
from the use case of IoT end-nodes, which operate in hostile environments under

https://doi.org/10.23919/DATE.2018.8342208

4.1. Background 31

the attacker’s control. While IoT end-nodes evolved to complex SoCs, we limit
faults to the cryptographic accelerator. The attacker’s objective is to inject
faults during the cryptographic computation, with the goal of performing DFA to
recover the encryption keys. We assume other parts of the system to be protected
with orthogonal protection mechanisms like data redundancy or Control-Flow
Integrity (CFI).

4.1.2 Energy and Security Requirements of IoT End-Nodes
One key driver for the development of the IoT is collecting rich and diverse
information streams from sensors, which can then be fed to state-of-the-art
learning-based data analytics algorithms. Since IoT end-nodes must work within
a tiny power envelope, this fact introduces a significant limit on the volume of data
that can be processed and transferred securely, e.g., the size of captured images.
To address the first limiting factor, near-sensor smart data analytics is a promising
direction. IoT end-nodes must evolve from simple data collectors and brokers into
analytics devices that are able to perform a pre-selection of potentially interesting
data and/or transform it into a more abstract, higher information density form,
such as a classification tag. With the burden of sensemaking partially shifted from
centralized servers to distributed end-nodes, the energy spent on communication
and the network load can be minimized effectively, and more information can be
extracted, making the IoT truly scalable. However, performing analytics such as
feature extraction or classification directly on end-nodes does not address the
security concerns. It worsens them: distilled data that is stored or sent over the
network at several stages of the analytics pipeline is even more privacy-sensitive
than the raw data stream [Kha+12; Zha+14].

Protecting sensitive data at the boundary of the on-chip analytics engine
is a way to address these security issues. However, cryptographic algorithms
come with a significant workload, which can easily be of 100-1000s of processor
instructions per encrypted byte [Din+19]. Even further, when countermeasures
for fault attacks are needed, the computational workload increases even more,
often not practical for devices with a limited power budget. This security workload
is added to the computational effort imposed by leading feature extraction and
classification algorithms, such as deep CNNs. CNNs are extremely powerful in
terms of data analytics and state-of-the-art results in fields such as computer
vision, e.g., object detection [KSH12], scene parsing [CMB15], and semantic
segmentation tasks [Gir+14], and audio signal analytics [Dah+12] have been
demonstrated. While effective, deep CNNs usually necessitate many billions
of multiply-accumulate operations, as well as storage of millions of bytes of
pre-trained weights [He+16].

The combined workload necessary to tackle these two limitations to the
development of smarter IoT end-nodes - namely, the necessity for near-sensor
analytics and that for security - is formidable, especially under the limited
available power envelope and the tight memory and computational constraints of
deeply embedded devices. One possible solution is to augment IoT end-nodes with
specialized blocks for compute-intensive data processing and encryption functions

4.1. Background 32

2PRG
k0 ECA

c0

k1Ep0
y0

…CB
ECA

c1

k2Ep1
y1

gn CB
K * * *

Figure 4.1: 2PRG-based leakage-resilient stream cipher.

while retaining full software programmability to cope with lower computational-
intensity tasks. Specialized processing engines should be tightly integrated both
with the software-programmable cores and with one another, streamlining the
process of data exchange between the different actors as much as possible to
minimize the time and energy spent in data exchange. At the same time, to
simplify their usage from the developer’s perspective, it should be possible to
abstract them, integrating them into standard programming models used in
software development for IoT-aware platforms.

4.1.3 Leakage-Resilient Encryption with Re-Keying and a
2PRG

One example of leakage-resilient encryption that is secure against DPA and
DFA by design is the 2PRG construction combined with a secure re-keying
function [Pie09; Sta+10], as shown in Figure 4.1. This scheme consists of
two basic parts: (1) a secure re-keying function g, and (2) a leakage-resilient
encryption scheme. The re-keying function g : (K, n) 7→ k∗ securely derives a
fresh session key k∗ from a pre-shared master secret K and a fresh nonce n
and hence must be implemented such as to resist both Simple Power Analysis
(SPA) and DPA attacks. However, the choice of a fresh nonce n results in a fresh
session key k∗ to be used for each invocation of the leakage-resilient encryption
scheme, thus providing protection against DFA attacks at the algorithmic level.
The leakage-resilient encryption scheme, on the other hand, is designed such as
to guarantee a bounded data complexity q = 2 per key when performing the
actual en-/decryption. For this purpose, the leakage-resilient encryption mode
in Figure 4.1 utilizes a key update step k∗

i 7→ k∗
i+1 to provide a different key for

the encryption of each plaintext block pi. More concretely, the 2PRG primitive
used in Figure 4.1 encrypts two constant values CA and CB , using a block cipher
E with the input key k∗

i to give the next block’s key k∗
i+1 and a pad yi. The pad

yi is used for en-/decrypting the respective pi/ci.

4.2. Isap - Lightweight Authenticated Encryption 33

E c E/DgnK p
Feed-ForwardComputationPolynomialMultiplication

k*

Figure 4.2: Re-keying function based on a polynomial multiplication with a block-
cipher-based feed-forward computation.

4.1.4 Re-Keying Function
The re-keying function depicted in Figure 4.1 is used to provide a fresh session
key and a secure initialization of the 2PRG. In Section 2.5.3, we presented the
basic principles of frequent re-keying. As discussed in this chapter, one prominent
example of a re-keying function is a polynomial multiplication in a finite field
between the master key and a fresh nonce since it can easily be protected against
DPA with classical countermeasures such as masking or shuffling. However, as
pointed out in [Bel+15; BFG14; Dob+14; GJ16; Med+11; PM16], the algebraic
structure of a multiplication opens the door to combined attacks on g and the
encryption. To mitigate this type of attack, Dobraunig et al. proposed adding a
block-cipher-based feed-forward computation [Dob+15] after the multiplication,
as shown in Figure 4.2. We select this design since still easy to provide DPA
protection against the polynomial multiplication.

4.2 Isap - Lightweight Authenticated Encryption
Isap [Dob+17] is an Encrypt-then-MAC scheme consisting of the two algorithms
IsapEnc and IsapMac depicted in Figure 4.3 and Figure 4.5 and using the
keys KE and KA, respectively. IsapEnc uses a nonce n for re-keying during
initialization and follows the same principle of continuous key updates during
encryption as previous modes. However, in addition, IsapMac ensures DPA
security for IsapEnc in case of malicious modifications of ciphertexts. In terms
of IsapMac, the core idea to prevent DPA is to bind the Message Authentication
Code (MAC) key k∗

A to the hash y of the ciphertexts. This automatically results
in different keys for different ciphertexts. For the security level κ = 128 bits,
IsapEnc and IsapMac use Keccak-f [400] as the permutation p with a = 20,
b = 12, and c = 12 rounds, and the rates r1 = 144, r2 = 1, and r3 = 144. With
these parameters, injection of the nonce in IsapEnc is 2-limiting, and DPA is
prevented. However, a side-channel secure re-keying function g is required for
IsapMac to derive the session key k∗

A from the pre-shared authentication master
key KA. Here, Isap uses the GGM-like counterpart named IsapRk, which is
shown in Figure 4.4. The construction of IsapRk is also embedded in IsapEnc
and essentially comprises the nonce-absorbing initialization part in Figure 4.3

4.2. Isap - Lightweight Authenticated Encryption 34c1
pc c3 pcKE

nu p1
r3 pc

cv-1pv-1
cvpv

pbpc
n1

IV3 c3r3 r3c2r2c2r2Initialization Encryption
Figure 4.3: IsapEnc with initialization. k*A

pcKA
nu

pbpc
n1

IV2 c2r2c2r2 pb
n2

c2r2
Figure 4.4: IsapRk.

but truncates the output to give a κ-bit session key.
By design, Isap prevents DFA at the algorithmic level. Since the nonce

changes for every encryption, the initialization phase of IsapEnc always yields
a different starting state for encryption, thus protecting the master key KE

against DFA and DPA. Similarly to that, the re-keying function IsapRk serves
the same purpose to protect the master key KA against DFA attacks by design.
Note that fault attacks such as Statistical Fault attacks (SFA) or Statistical
Ineffective Fault Attacks (SIFA) may still be possible on Isap. To address this
threat, the re-keying function of Isap was updated in [Dob+20] to overwrite
parts of the computed session key with parts of the nonce. This modification
makes the re-keying function hard to invert such that the master key cannot
be recovered without additional implementation attacks. However, during the
implementation of this hardware accelerator, our implementation does not yet
contain this change.

4.3. SoC Architecture 35

nIV1 pa tc1
pa

cv
pa

KA
pa*g kAc1r1c1r1 ·y

Hashing Suffix-MAC
Figure 4.5: IsapMac.

4.3 SoC Architecture
The Fulmine multi-core SoC, as shown in Figure 4.6, implements a secure near-
sensor data analytics architecture, which leverages highly efficient processors
for software programmable signal processing and control, flexible hardware
acceleration for cryptographic functions, convolutional neural networks, and
a highly optimized subsystem implementing power management and efficient
communication and synchronization among cluster resources. The architecture,
based on the PULP platform [Ros+15], is organized in two distinct voltage
and frequency domains, cluster and soc, communicating through an AXI4
interconnect and separated by dual-clock FIFOs and level shifters. Two Frequency-
Locked Loops (FLLs) are used to generate clocks for the two domains, which rely
on separate external voltage regulators for their supply and can be independently
power-gated. The FLLs work with a 100 kHz external reference clock and support
fast switching between different operating modes within less than 10 reference
cycles in the worst case.

The cluster domain is built around six processing elements (four general-
purpose processors and two flexible accelerators) that share 64 kB of level 1
Tightly-Coupled Data Memory (TCDM), organized in eight word-interleaved
SRAM banks. A low-latency logarithmic interconnect [Rah+11] connects all
processing elements to the TCDM, enabling fast and efficient communication
among the resources of the cluster. The TCDM-interconnect supports single-cycle
access from multiple processing elements to the TCDM banks. If two masters
attempt to access the same bank in the same clock cycle, one of them is stalled
using a starvation-free round-robin arbitration policy. The two hardware acceler-
ators, Hardware Cryptography Engine (HWCRYPT) and Hardware Convolution
Engine (HWCE), can directly access the same TCDM used by the cores. This
architecture allows data to be seamlessly exchanged between cores and acceler-
ators without requiring explicit copies and/or point-to-point connections. To
avoid a dramatic increase in the area of the TCDM-interconnect, as well as to
keep the maximum power envelope in check, the two accelerators share the same
set of four physical ports on the interconnect. The two accelerators are used in a
time-interleaved fashion, allowing one accelerator full access to the TCDM at a
time, which is suitable for data analytics applications where computation can be
divided into several separate stages.

4.3. SoC Architecture 36

DUAL

CLOCK

FIFO

HWCRYPTHWCE

TCDM STATIC MUX

TIGHTLY COUPLED DATA MEMORY INTERCONNECT

SRAM

bank 0

OR10N

core 0

P
E

R
IP

H
E

R
A

L
 I

N
T

E
R

C
O

N
N

E
C

T

OR10N

core 1

OR10N

core 2

OR10N

core 3

SRAM

bank 1

SRAM

bank 2

SRAM

bank 3

SRAM

bank 4

SRAM

bank 5

SRAM

bank 6

SRAM

bank 7

DEMUX DEMUX DEMUX DEMUX

DMA

EVENT

UNIT

SHARED INSTRUCTION CACHE

CLUSTER AXI BUS
DUAL

CLOCK

FIFO

FULMINE

CLUSTER

SOC AXI BUS

L2 SRAM

(192 kB)
uDMA

SPI

master
UART I2C I2S

SOC APB BUS

GPIO

SOC

CTRL

FLL

CTRL

SPI

slave

PAD MUX

CLUSTER

FLL

SOC FLL

TCDM

(64 kB)

master

slave

Figure 4.6: Fulmine SoC architecture. The soc domain is shown in shades of blue,
the cluster domain in shades of green.

The four OR10N cores are based on an in-order, single-issue, 4-stage pipeline,
implementing the OpenRISC [OPE12] Instruction Set Architecture (ISA), im-
proved with extensions for higher throughput and energy efficiency in parallel
signal processing workloads [Gau+17]. GCC 4.9 and LLVM 3.7 toolchains are
available for the cores, while OpenMP 3.0 is supported on top of the bare-
metal parallel runtime. The cores share a single instruction cache of 4 kB of
Standard Cell Memory (SCM) [Tem+16] that can increase energy efficiency by
up to 30 % compared to an SRAM-based private instruction cache on parallel
workloads [Ros+16]. The ISA extensions of the core include general-purpose
enhancements automatically inferred by the compiler, such as zero-overhead
hardware loops and load and store operations embedding pointer arithmetic
and other DSP extensions that can be explicitly included by means of intrinsic
calls. For example, to increase the number of effective operations per cycle, the
core includes SIMD instructions working on 8 bit and 16 bit data, which exploit
32 bit registers as vectors. Furthermore, the core is enhanced with a native
dot-product instruction to accelerate computation-intensive classification and
signal-processing algorithms. This single-cycle operation supports both 8 bit and
16 bit vectors using two separate datapaths to reduce the timing pressure on
the critical path. Fixed point numbers are often used for embedded analytics
and signal-processing applications. For this reason, the core has also been ex-
tended with single-cycle fixed point instructions including rounded additions,
subtractions, multiplications with normalization, and clipping instructions.

The cluster features a set of peripherals, including a Direct Memory Ac-

4.3. SoC Architecture 37

cess (DMA) engine, an event unit, and a timer. The processors can access
the control registers of the hardware accelerators and of the other peripherals
through a memory-mapped interface implemented as a set of private, per-core
Demultiplexerss (DEMUXs), and a peripheral interconnect shared among all
cores. The peripheral interconnect implements the same architecture of the
TCDM-interconnect, featuring a different addressing scheme to provide 4 kB of
address map for each peripheral.

The DMA controller available in the cluster is an evolution of the one presented
in [Ros+14], and enables fast and flexible communication between the TCDM
and the L2 memory through four dedicated ports on the TCDM-interconnect
and an AXI4 plug on the cluster bus. In contrast to traditional memory-mapped
interfaces, access to the internal DMA programming registers is implemented
through a sequence of control words sent to the same address, significantly
reducing DMA programming overheads, i.e., less than 10 cycles to initiate a
transfer, on average. The DMA supports up to 16 outstanding 1D or 2D transfers
to hide L2 memory latency and allows 256 byte bursts on the 64-bit AXI4
interface to guarantee high bandwidth. Once a transfer is completed, the DMA
generates an event to the cores that can independently synchronize on any of
the enqueued transfers by checking the related transfer ID on the DMA control
registers. Synchronization of DMA transfers and hardware-accelerated tasks is
hardware-assisted by the event unit. The event unit can also be used to accelerate
the typical parallelization patterns of the OpenMP programming model, requiring,
for example, only 2 cycles to implement a barrier, 8 cycles to open a critical
section, and 70 cycles to open a parallel section. These features are all essential
to guarantee high computational efficiency during the execution of complex tasks
such as CNNs in Fulmine, as detailed in Section 4.4.

The soc domain contains 192 kB of L2 memory for data and instructions, a
4 kB ROM, a set of peripherals, and a power management unit. Furthermore,
the soc includes a (quad) SPI master, I2C, I2S, UART, GPIOs, a JTAG port for
debugging, and a (quad) SPI slave that can be used to access all the SoC internal
resources. An I/O DMA subsystem (uDMA) allows to autonomously copy data
between the L2 memory and the external interfaces, even when the cluster is
in sleep mode. This mechanism allows us to relieve cores from the frequent
control of peripherals necessary in many microcontrollers and to implement a
double buffering mechanism both between IOs and L2 memory and between
L2 memory and TCDM. Therefore, I/O transfers, L2 memory to TCDM transfers,
and computation phases can be fully overlapped.

A sophisticated power management architecture distributed between the soc
and cluster domains can completely clock-gate all the resources when idle, as
shown in Figure 4.7 (idle mode with FLL on). The power manager can also be
programmed to put the system in a low-power retentive state by switching down
the FLLs and relying on the low-frequency reference clock (low freq and idle
mode). Finally, it can be used to program the external DC/DC converter to fully
power-gate the cluster domain. The event unit is responsible for automatically
managing the transitions of the cores between the active and idle state. To

4.4. Cluster-Coupled Accelerator Engines 38

CPU CG

BUSY

CPU CG

CPU CG

CORE CG

EN

EN

EN

EN

EVENT UNIT

DMAHWCRYPT HWCE

CG

Cluster
PMU

EN

Event

I/O
Subsystem

BUSY

SoC
PMU

FLL
FLL

EN

I/O Events 8

Ready To
Shutdown

External
PMU

SoC
Supply

Cluster
Supply

SoC Cluster

EN

EN

CLUSTER @0.8V

ACTIVE

LOW-FREQ (FLL off)

IDLE (FLL on)

IDLE (FLL off)

DEEP SLEEP

50 MHz

100 kHz

-

-

-

-

300 us

20 ns

300 us

DC/DC1

~10 mW

230 uW

600 uW

210 uW

~10 nW2

ACTIVE

LOW-FREQ (FLL off)

IDLE (FLL on)

IDLE (FLL off)

DEEP SLEEP

50 MHz

100 kHz

-

-

-

-

300 us

20 ns

300 us

300 us

~2 mW

130 uW

510 uW

120 uW

120 uW

CLOCK WAKEUP POWER

SOC @0.8V

CLOCK WAKEUP POWER

1Depends on DC/DC settling time.
2Cluster is power-gated in DEEP SLEEP mode.

Figure 4.7: Fulmine power management architecture and power modes.

execute a wait-for-event instruction, the cores try to read a special register in
the event unit; this load is kept stalled until the event comes so that the core
pipeline is stalled in a known state. After pending transactions and cache refills
are complete, the event unit gates the core clock. The clock gating manager
gates the cluster clock if the idle mode is selected and no engine is busy, or it
activates the handshaking mechanism with the external regulator to power gate
the cluster if the deep-sleep mode is selected. Once the wake-up event reaches the
power management unit, the latter reactivates the cluster, then it forwards the
event notification to the event unit, waking up the destination core on turn. soc
and cluster events can be generated by all SoC peripherals including GPIOs,
by hardware accelerators, by the DMA, by the cluster timer, or by processors
through the configuration interface of the event unit mapped in the peripheral
interconnect. Figure 4.7 reports all the power modes along with their average
wakeup time and power consumption, divided between the cluster and soc
domains. As the cluster and soc power domains are managed independently,
it is possible to transparently put the cluster in idle, where it consumes less
than 1 mW, when waiting for an event such as the end of an I/O transfer to L2
or an external interrupt that is expected to arrive often. It is possible to partially
trade-off wakeup time versus power by deciding whether to keep the FLLs active
in idle mode: by paying a ∼400 µW cost, wakeup time is reduced to essentially
a single clock cycle (20 ns) versus a maximum of 10 reference cycles (∼320 µs)
if the FLL is off. The deep sleep mode instead enables efficient duty cycling in
the case computing bursts are relatively rare by completing power-gating the
cluster domain and keeping the soc domain in a clock-gated, retentive state.

4.4 Cluster-Coupled Accelerator Engines
In this section, we describe in detail the architecture of the two cluster-coupled
accelerator engines, HWCRYPT and HWCE. The main purpose of these engines
is to provide a performance and efficiency boost on computations, and they were

4.4. Cluster-Coupled Accelerator Engines 39

M
EM

O
RY

M
UXING

to
TIGHTLY CO

UPLED
DATA M

EM
O

RY
INTERCO

NNECT

CO
NTRO

LLER

to
PERIPHERAL

INTERCO
NNECT

M
EM

O
RY

M
UXING

CO
M

M
AND

Q
UEUE

AES Engine

Roundkey
Generator

Inp

Outp

CA

CB 128
128

k0

AES Round
AES Round

AES Round
AES Round

Sponge Engine

Re-Keying Engine

400

Round Constant
Generator

Keccak
f400

IV_MAC
IV_RK1
IV_ENC

Variable
Rate

Engine

CntPad

144 …

StateLeft

StateRight

PaddedNonce
Keccak

f400
Variable

Rate
Engine

IV_MAC
IV_RK1

Outp

128

Keccak
Round

Keccak
Round

Keccak
Round

400

Inp
128

Figure 4.8: HWCRYPT datapath overview, with details of the AES Engine and the
Sponge Engine.

designed to minimize active power, e.g., by using aggressive clock gating on
time-multiplexed sub-modules and by making use of latches in place of regular
flip-flops to implement most of the internal buffering stages.

The shared-memory nature of the HWCRYPT and HWCE accelerators
enables efficient zero-copy data exchange with the cores and the DMA engine,
orchestrated by the cluster event unit. This architecture enables complex com-
putation patterns with frequency transfers of data set tiles from/to memory. A
typical application running on the Fulmine SoC operates conceptually in the
following way. First, the input set, e.g., a camera frame, is loaded into the
L2 memory from an external I/O interface using the uDMA. The cluster can
be left in sleep mode during this phase and woken up only at its conclusion.
The input set is then divided into tiles of appropriate dimension so that they
can fit in the L1 shared TCDM; one tile is loaded into the cluster, where a
set of operations are applied to it either by the software cores or the hardware
accelerators. These operations can include en-/decryption and convolutions in
hardware, plus any software-implementable filter. The output tiles are then
stored back to L2 memory using DMA transfers, and computation continues with
the next tile. Operations such as DMA transfers can typically be overlapped
with computation by using double buffering to reduce the overall execution time.

4.4. Cluster-Coupled Accelerator Engines 40

4.4.1 Hardware Encryption Engine
The Hardware Encryption Engine (HWCRYPT), as shown in Figure 4.8, im-
plements a dedicated acceleration unit for a variety of cryptographic primitive
operations, exploiting the advantages of the shared memory architecture of
the SoC. HWCRYPT is based on two parallel cryptographic engines, one im-
plementing based on two high-performant instances of the AES-128 [NIS01]
block cipher and the other one based on Isap [Dob+16; Dob+20] with the
Keccak-f [400] [Ber+09] permutation as its underlying permutation primitive.
Furthermore, it includes a dedicated re-keying engine to initialize the AES Engine.

The HWCRYPT utilizes two 32 bit memory ports of the TCDM-interconnect,
while an internal interface performs the conversion from 32 bit to the 128 bit format
used by the encryption engines. The system is designed so that memory interface
bandwidth matches the requirements of all cipher engines. HWCRYPT is
programmed and started through a dedicated set of configuration registers, which
allows the reconfiguration of a new encryption operation while the HWCRYPT
is busy by using a command queue that supports up to four pending operations.
The current state of the HWCRYPT can be monitored via status registers. The
accelerator supports a flexible event and interrupt system to indicate when one
or all operations have finished allowing the processing core to reconfigure the
DMA of HWCRYPT. All HWCRYPT blocks are aggressively clock gated, so
each component consumes power only when in active use.

AES Engine

The AES Engine implements the 2PRG-based stream cipher, as discussed in
Figure 4.1, using the two instances of AES-128. Computing the encryption pad
for one message block and updating the key requires two invocations of AES-128.
Since these computations do not have a data dependency, they can be parallelized.
For this reason, the hardware design contains two instances of AES-128, which
share the same AES key scheduling unit. Both AES instances are implemented
fully in parallel with two AES rounds in the combinational path. Since this
architecture can execute two AES rounds within one clock cycle, executing all
ten rounds takes five clock cycles plus one cycle of preloading the input register.

Apart from the leakage-resilient cryptographic mode of operation, the AES
Engine also implements the Electronic-Code-Book (ECB) mode as well as the
XEX-based Tweaked-Codebook mode with Ciphertext Stealing (XTS) [Dwo+10].
XTS uses two different encryption keys, one to derive the initial tweak and
the other one to encrypt the data. When using the same key for deriving the
initial tweak and encrypting the data, the encryption scheme is changed to
XOR–Encrypt–XOR (XEX) [Rog04] without implications to the overall security.
Furthermore, the accelerator supports the individual execution of a cipher round
similar to the Intel AES-NI instructions [Gue10] to boost the software performance
of other new AES round-based algorithms [HKR15; WP13].

4.4. Cluster-Coupled Accelerator Engines 41

Re-Keying Engine

The re-keying engine is used to initialize the 2PRG of the AES Engine to
provide fault security at the algorithmic level, as described in Figure 4.1. This
engine that is part of HWCRYPT takes a master key K and a fresh nonce
n from the configuration registers and computes a session key k∗ = K · n,
where · denotes a polynomial multiplication in GF (28)[y](y16 + 1) as proposed by
Medwed et al. [Med+10]. The polynomial multiplication algorithm is transformed
to the operand scan form, which is better suited for a parallel implementation.
To achieve a parallel implementation, the re-keying engine contains 16 instances
of a GF (28) multiplier. Given this partial parallel architecture, computing one
session key takes 18 clock cycles, including the time for configuring all registers.
The re-keying engine offers side-channel protection by means of additive masking,
with a configurable masking order and shuffling of the partial products of the
polynomial multiplication. In addition to shuffling the start index as proposed
in [Med+10], this architecture supports the shuffling of all partial products
resulting in 16! different shuffling sequences. Note that shuffling does not decrease
the multiplication throughput of our implementation. However, masking decreases
the performance since our architecture only contains one polynomial multiplier.
Concretely, computing a masked session key takes 18 ·(d+1) clock cycles, where d
denotes the masking order. Both the masking and shuffling unit get their required
randomness from a shared pseudo-random number generator, which security is
not scope of this work. Furthermore, the re-keying engine performing polynomial
multiplication also supports a post-processing step comprising a feed-forward
computation with a block cipher as proposed by Dobraunig et al. [Dob+15],
which mitigates key recovery through time-memory trade-off attacks such as
in [Dob+14]. To achieve this task, we reuse AES-128 from the AES Engine,
which adds a static overhead of 20 clock cycles to the re-keying operation.

Sponge Engine

The Sponge Engine implements two instances of the Keccak-f [400] permuta-
tion, each based on three permutation rounds. Keccak-f [400]’s architecture
is optimized to match the length of the critical path of the AES-128 engine.
Permutations support a flexible configuration of the rate and round parameters.
The rate defines how many bits are processed within one permutation operation,
and it can be configured from 1 bit to 128 bits in powers of two. This param-
eter supports a trade-off between security and throughput. The more bits are
processed in one permutation call, the higher the throughput - but with a cost
regarding the security margin of the permutation. The round parameter config-
ures the number of Keccak-f [400] rounds applied to the internal state. It can
be set up as a multiple of three or for 20 rounds as defined by the specification of
Keccak-f [400]. The two instances of permutations are combined to implement
an authenticated encryption scheme Isap based on a sponge construction with
a prefix message authentication code that additionally provides integrity and
authenticity on top of confidentiality. In the sponge construction for encryption,

4.5. Experimental Evaluation 42

the initial state of the sponge is filled with the key K and the initial vector IV .
The engine then absorbs all bits of the nonce n combined with the application of
the Keccak-f [400] permutation p to compute a fresh session state. After exe-
cuting the Keccak-f [400] permutation p, we sequentially squeeze an encryption
pad and apply the permutation function to encrypt all plaintext blocks Pi via an
XOR operation. Since the nonce is different for every operation, also the session
key differs. Consequently, the encryption pads are different for every encryption,
thus, protecting against DFA by design. Apart from this favorable mode of
operation, the Sponge Engine also provides encryption without authentication
and direct access to the permutations to allow the software to accelerate any
Keccak-f [400]-based algorithm.

4.5 Experimental Evaluation
In this section, we analyze the measured performance and efficiency of our
platform on the manufactured Fulmine prototype chips fabricated in UMC 65 nm
LL 1P8M technology. Figure 4.9 shows a microphotograph of a manufactured
Fulmine chip, which occupies an area of 2.62 mm×2.62 mm.

4.5.1 System-on-Chip Operating Modes
An important constraint for the design of small, deeply embedded systems
such as the Fulmine SoC is the maximum supported power envelope. This
parameter is important in selecting the system battery and the external DC/DC
converter. To maximize energy efficiency, the worst case for the DC/DC converter,
i.e., the peak power, should not be too far from the average working power
to be delivered. However, a SoC like Fulmine can operate in many different
conditions: in pure software, with part of the accelerator functionality available,
or with both accelerators available. These modes are characterized by very
different average switching activities and active power consumption. In pure
software mode, it is often desirable to push frequency as much as possible,
while when using accelerators, it can be convenient to relax it to improve power
consumption. Moreover, some of the internal accelerator datapaths are not easily
pipelined, as adding pipeline stages severely hits throughput - this is the case
of the HWCRYPT sponge engine (Section 4.4.1), which relies on tight loops of
Keccak-f [400] rounds as visible in the datapath in Figure 4.8. Relaxing these
paths can improve the overall synthesis results for the rest of the circuit.

Multi-corner multi-mode synthesis and place & route were used to define
three operating modes that the developer can statically select for the target
application: in the cry-cnn-sw mode, all accelerators and cores can be used. In
the kec-cnn-sw mode, the processing cores and part of the accelerators can be
used: the HWCE fully, the HWCRYPT limited to Keccak-f [400] primitives.
In this mode, the frequency can be pushed significantly further than in the
cry-cnn-sw mode. Finally, in the sw mode, only the cores are active, and the

4.5. Experimental Evaluation 43
T

ec
hn

ol
og

y
A

re
a

P
ow

er
a

C
on

v.
P

er
f.

b
C

on
v.

E
ff

.b
E

nc
.

P
er

f.
c

E
nc

.
E

ff
.c

SW
P

er
f.

SW
E

ff
.

E
q.

E
ff

.d

[m
m

2
]

[m
W

]
[G

M
A

C
/s

]
[G

M
A

C
/s

/W
]

[G
bi

t/
s]

[G
bi

t/
s/

W
]

[M
IP

S]
[M

IP
S/

m
W

]
[p

J/
op

]

AES

M
at

he
w

et
al

.[
M

at
+

14
]

In
te

l
2.

74
e-

3
0.

43
-

-
0.

12
4

28
9

-
-

0.
19

g
@

0.
43

V
,

32
4M

H
z

22
nm

Z
ha

ng
et

al
.[

Z
ha

+
16

]
T

SM
C

4.
29

e-
3

4.
39

-
-

0.
44

6
11

3
-

-
0.

49
g

@
0.

9V
,

1.
3G

H
z

40
nm

Z
ha

o
et

al
.[

Z
H

A
15

]
65

nm
L

L
0.

01
3

0.
05

-
-

0.
02

7
57

4
-

-
0.

10
g

@
0.

5V
,

34
M

H
z

H
oc

qu
et

et
al

.[
H

oc
+

11
]

65
nm

L
P

0.
01

8
2.

5e
-4

-
-

3.
6e

-7
14

4
-

-
0.

39
g

@
0.

36
V

,
0.

32
M

H
z

CNN

O
ri

ga
m

i[
C

B
17

]
U

M
C

3.
09

93
37

40
2

-
-

-
-

0.
69

g
@

0.
8V

,
19

0M
H

z
65

nm
Sh

iD
ia

nN
ao

[D
u+

15
]

65
nm

4.
86

32
0

64
20

0
-

-
-

-
1.

39
g

E
ye

ri
ss

[C
he

+
16

]
T

SM
C

12
.2

5
27

8
23

83
-

-
-

-
3.

35
g

@
1V

,
20

0M
H

z
65

nm
L

P
Ja

eh
y.

et
al

.[
Si

m
+

16
]

65
nm

16
.0

0
45

e
32

71
0e

-
-

-
-

0.
39

g
@

1.
2V

,
12

5M
H

z
P

ar
k

et
al

.[
P

ar
+

15
]

65
nm

10
.0

0
37

f
41

11
08

f
-

-
-

-
0.

25
g

@
1.

2V
,

20
0M

H
z

IoT

Sl
ee

pW
al

ke
r[

B
ol

+
13

]
65

nm
0.

42
0.

17
5

-
-

-
-

25
14

3
6.

99
@

0.
4V

,
25

M
H

z
M

ye
rs

et
al

.[
M

ye
+

15
]

65
nm

3.
76

0.
00

8
-

-
-

-
0.

7
88

11
.4

@
0.

4V
,

0.
7M

H
z

K
on

ij.
et

al
.[

K
on

+
16

]
18

0n
m

37
.7

0.
52

-
-

-
-

10
.4

20
50

.0
@

1.
2V

,
10

M
H

z
M

ia
W

al
la

ce
[P

ul
+

16
]

U
M

C
7.

4
9.

2
2.

41
26

1
-

-
27

0
29

22
.5

@
0.

65
V

,
68

M
H

z
65

nm

Fulmine

cr
y-

cn
n

-s
w

U
M

C
65

n
m

L
L

6.
86

24
4.

64
30

9
1.

78
67

33
3

14

5.
74

@
0.

8V
,

85
M

H
z

ke
c-

cn
n

-s
w

13
6.

35
46

5
1.

6
10

0
40

8
31

@
0.

8V
,

10
4M

H
z

sw
12

-
-

-
-

47
0

39
@

0.
8V

,
12

0M
H

z
a

P
ow

er
an

d
effi

ci
en

cy
nu

m
be

rs
re

fe
r

to
co

re
po

w
er

,
ex

cl
ud

in
g

I/
O

s.
b

C
on

si
de

ri
ng

1
M

A
C

=
2

op
s

w
he

re
G

op
/s

ar
e

re
po

rt
ed

.
Fu

lm
in

e
nu

m
be

rs
re

fe
r

to
th

e
4b

it
w

ei
gh

ts
m

od
e.

c
R

ef
er

s
to

A
E

S-
12

8-
2P

R
G

fo
r

Fu
lm

in
e

in
cr

y-
cn

n-
sw

or
Is

ap
fo

r
Fu

lm
in

e
in

ke
c-

cn
n-

sw
.

d
C

on
si

de
ri

ng
th

e
lo

ca
l

fa
ce

de
te

ct
io

n
w

or
kl

oa
d

of
Se

ct
io

n
4.

6.
2.

1o
p

=
1

O
pe

nR
IS

C
eq

ui
va

le
nt

in
st

ru
ct

io
n

fr
om

th
e

se
t

de
fin

ed
in

[O
P

E
12

].
e

W
ei

gh
ts

pr
od

uc
ed

on
-c

hi
p

fr
om

a
sm

al
l

se
t

of
P

ri
nc

ip
al

C
om

po
ne

nt
s

A
na

ly
si

s
(P

C
A

)
ba

se
s

to
sa

ve
ar

ea
/p

ow
er

.
N

o
ev

al
ua

ti
on

on
th

e
ge

ne
ra

l
va

lid
it

y
of

th
is

ap
pr

oa
ch

is
pr

es
en

te
d

in
[S

im
+

16
].

f
P

er
fo

rm
an

ce
&

po
w

er
of

in
fe

re
nc

e
en

gi
ne

s
on

ly
,

es
ti

m
at

in
g

th
ey

ar
e

re
sp

on
si

bl
e

fo
r

20
%

of
to

ta
l

po
w

er
.

g
A

pp
lic

at
io

n
Sp

ec
ifi

c
In

te
gr

at
ed

C
ir

cu
it

(A
SI

C
)

eq
ui

va
le

nt
effi

ci
en

cy
re

fe
rs

to
an

A
E

S-
on

ly
or

C
N

N
-o

nl
y

eq
ui

va
le

nt
w

or
kl

oa
d.

T
ab

le
4.

1:
C

om
pa

ris
on

be
tw

ee
n

Fu
lm

in
e

an
d

se
ve

ra
lp

la
tf

or
m

s
of

th
e

st
at

e-
of

-t
he

-a
rt

in
en

cr
yp

tio
n,

da
ta

an
al

yt
ic

s,
an

d
Io

T
en

d-
no

de
s.

4.5. Experimental Evaluation 44

Figure 4.9: Fulmine chip microphotograph with main components highlighted.

operating frequency can be maximized. Figure 4.10 shows frequency scaling in
the three operating modes while varying the cluster operating voltage VDD. The
three modes were designed so that at VDD =1.2 V, current consumption under
full load is close to 100 mA (i.e., 120 mW of power consumption), as can be seen
in Figure 4.10b.

4.5.2 HWCRYPT Performance and Power Evaluation
Due to a throughput-oriented hardware implementation, HWCRYPT achieves
a significant acceleration compared to an optimized software implementation
running on the OpenRISC cores. To encrypt one 8 kB block of data using the
AES-128-ECB mode, HWCRYPT requires ∼3100 clock cycles, including the
initial configuration of the accelerator. This is a 450× speedup compared to
a software implementation on a single core. When parallelizing the software
implementation to all four cores, the hardware accelerator still reaches a speedup
of 120×. The throughput of HWCRYPT in AES-128-ECB mode is 0.38 cycles
per byte (cpb).

Using the AES-128-2PRG configuration, HWCRYPT reaches a throughput
of 0.42 cpb. When comparing that to an optimized software implementation on a
single core, this speeds up the throughput by a factor of 510× and by a factor
297× when running on four cores. It is important to note that, contrary to the
ECB mode, 2PRG encryption cannot be efficiently parallelized in software due
to data dependencies.

The authenticated encryption scheme based on Isap achieves a throughput
of 0.51 cpb by utilizing both permutation instances in parallel. The first permu-
tation encrypts the data, and the second one is used to compute the message
authentication code to provide integrity and authenticity. This performance is
achieved in a maximum-rate configuration of 128 bit per permutation call and 20

4.5. Experimental Evaluation 45

50

100

150

200

250

300

350

400

450

C
lu

st
e

r
fr

e
q

u
e

n
cy

 [
M

H
z] CRY-CNN-SW (all cluster operational)

KEC-CNN-SW (HWCRYPT/AES not operational)

SW (HWCRYPT, HWCE not operational)

0. 80 0. 85 0. 90 0. 95 1. 00 1. 05 1. 10 1. 15 1. 20

Vdd [V]

(a) Cluster maximum frequency in three operating modes.

0. 80 0. 85 0. 90 0. 95 1. 00 1. 05 1. 10 1. 15 1. 20

Vdd [V]

0

20

40

60

80

100

120

140

160

C
lu

st
e

r
p

o
w

e
r

[m
W

] 1core 4core HWCE

HWCRYPT

/ISAP
HWCRYPT

/AES
CRY-CNN-SW

KEC-CNN-SW

SW

(b) Cluster power at maximum frequency in three operating modes.

Figure 4.10: Cluster maximum operating frequency and power in the cry-cnn-sw,
kec-cnn-sw, and sw operating modes. Each set of power bars, from
left to right, indicates activity in a different subset of the cluster. kec-
cnn-sw and sw bars show the additional power overhead from running
at the higher frequency allowed by these modes.

rounds as specified by Keccak-f [400]. Reducing the rate and/or increasing the
number of invoked permutations decreases the throughput while increasing the
security margin.

In Figure 4.11, we present the performance of HWCRYPT in terms of time
and energy per byte, while scaling the VDD operating voltage of the cluster. When
normalizing these values to the power consumption, we reach a performance of
61 Gbit/s/W for AES-128-2PRG and 137 Gbit/s/W for Isap-based authenticated
encryption, respectively.

4.5.3 Comparison with State-of-the-Art
Table 4.1 compares Fulmine with the architectures that define the boundaries of
the secure data analytics application space described in Section 4.7. Apart from
area, power, and performance, we also use an equivalent energy efficiency metric
defined as the energy that a platform has to spend to perform an elementary
RISC operation1. Fulmine achieves the highest result on this metric, 5.74 pJ

1This is computed as the total energy per instruction on the workload presented in Sec-
tion 4.6.2, which provides a balanced mix of encryption, convolution, other software-based
filters.

4.5. Experimental Evaluation 46

0

1

2

3

4

5

6

7

T
im

e
/b
y
te

 [
n

s]

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Vdd [V]

0

50

100

150

200

250

300

350

400

E
n
e
rg
y
/b
y
te

 [
p

J]

ISAP
HWCRYPT
AES-128-ECB
HWCRYPT

AES-2PRG
HWCRYPT

Figure 4.11: Performance and efficiency of the HWCRYPT accelerator in terms of
time/energy for elementary output.

per operation, thanks to the cooperation between its three kinds of processing
engines. The second-best result is of SleepWalker (6.99 pJ) - but in an operating
point where execution takes 89× more time than in the case of Fulmine.

Moreover, Fulmine provides better area efficiency than what is available
in other IoT end-nodes: 32 SleepWalker chips would be needed to achieve
the same performance as Fulmine in the workload of Section 4.6.2. On the
other hand, coupling an efficient IoT microcontroller with external accelerators
can theoretically provide an effective solution, but it requires continuous high-
bandwidth data exchange from chip-to-chip, which is typically not practical
in low-power systems. Conversely, in Fulmine, the hardware accelerators are
coupled to the cluster cores via the shared L1 memory, and no copy at all is
required - only a simple pointer exchange.

For IoT end-nodes, the smaller footprint of a System-on-Chip solution can
also provide an advantage with respect to a traditional system on board, which is
heavier and bulkier. Taking this reasoning one step further, while it is not always
possible to place sensors and computing logic on the same die, the system we
propose could be coupled to a sensor in a System-on-Package solution, requiring
only a single die-to-die connection. Competing systems listed in Table 4.1 would
require the integration of more than two dies on the same package, resulting in a
more complex and expensive design.

4.6. Use Cases 47

Cypress

CY15B104Q
FRAM

512kB

Cypress

CY15B104Q
FRAM

512kB

Cypress

CY15B104Q
FRAM

512kB

Cypress

CY15B104Q

FRAM

512 kB

2 MB NV RAM
CNN (partial) results

Microchip

SST26VF064B

Flasg

8MB

Microchip

SST26VF064B

Flash

8 MB

16 MB Flash
CNN weights

Fulmine SoC

SPI CS0

SPI CS1

SDIO[3:0] uDMA

L2 SRAM

192 kB

L1 TCDM

64 kB

DMA

Camera

EEG ADC

Converter

Figure 4.12: A Fulmine SoC connected to 16 MB of Flash, 2 MB of Ferroelectric RAM
(FRAM), and sensors (the grey area is taken into account for power
estimations).

4.6 Use Cases
To evaluate the Fulmine SoC in full end-to-end applications, we propose three
distinct use cases, which represent a necessarily incomplete selection of possible
security- and performance-critical IoT sensor analytics applications. The first
use case represents deep-learning-based sensor analytics workloads that are
predominantly executed locally on the end-node but require security to access
unsafe external memory (secure autonomous aerial surveillance, Section 4.6.1);
the second one represents workloads executed only in part on the end-node,
which therefore require secured connectivity with an external server (local face
detection and remote recognition, Section 4.6.2). Finally, the third use case
represents workloads in which, while analytics is performed online, data must
also be collected for longer-term monitoring (seizure detection and monitoring,
Section 4.6.3).

For our evaluation, we consider the system shown in Figure 4.12. We use two
banks (16 MB) of Microchip SST26VF064 bit quad-SPI flash memory to host the
weights for a deep CNN as ResNet-20 ; each bank consumes down to 15 µA in
standby and a maximum of 15 mA@3.6 V in QPI mode. Moreover, we use 2 MB
of non-volatile Cypress CY15B104Q FRAM as a temporary memory for partial
results. Four banks are connected in a bit-interleaved fashion to allow access with
quad-SPI bandwidth. Both the FRAM and the flash, as well as a camera and an
ADC input, are connected to the Fulmine uDMA, which can be used to transfer
data to/from the SoC L2 memory. The cluster then transfers tiles of the input
data to operate on and writes results back to L2 via DMA transfers. We focus
on the power spent for actual computation rather than on system power, i.e., we
include power spent in transfers from memory used during the computation but
exclude data acquisition/transmission2.

2We measured performance on each kernel composing the three applications and for SPI and
DMA transfers via RTL simulation, and the related power consumption by direct measurement
using an Advantest SoCV93000 integrated circuit tester, encapsulating the target kernel within
an infinite loop. Power is measured at two distinct frequencies to obtain leakage and dynamic
power density via linear regression. For external memories, we used publicly available data
from their datasheets, always considering the worst case.

4.6. Use Cases 48

10
1

10
2

10
3

10
4

En
er

gy
[m

J]

509 mJ
43.70 s 266 mJ

24.13 s 51 mJ
3.06 s 34 mJ

2.12 s
27 mJ
1.78 s

AES 1 core
CONV 1 core

1 core
1 core w/SIMD

4 core
HWCE 16x16b

HWCRYPT
HWCE 16x16b

HWCRYPT
HWCE 8x16b

HWCRYPT
HWCE 4x16b

77%

20%

68%

28%

52%

42%

8%
81%

45%

24% 16%
10%

39%

18% 25%

12%
34%

7%
11% 32%

10
0

10
1

10
2

10
3

T
im

e
[s]

Secure autonomous aerial surveillance
1218 mJ
203.00 s 852 mJ

136.19 s

En
er

gy
B

re
ak

do
w

n

CONV

AES

DMA, other

FRAM (px)

Flash (W)

SPI I/O4 core
4 core w/SIMD

Figure 4.13: Secure autonomous aerial surveillance use case based on a ResNet-20
CNN [He+16] with AES-2PRG encryption for all weights and partial
results. kec-cnn-sw and cry-cnn-sw operating modes at VDD =0.8 V.

4.6.1 Secure Autonomous Aerial Surveillance
For the secure autonomous aerial surveillance use case, we consider deploying
the system of Figure 4.12 on a low-power nano-Unmanned Aerial Vehicle (UAV)
such as a CrazyFlie nano quadcopter [Bit22]. Storms of tens or hundreds of these
devices could provide diffused, fully autonomous, and low-energy footprint aerial
surveillance. In these vehicles, the power budget for computing is extremely
limited (more than 90 % of the battery must be dedicated to the quadrotor
engines), and continuous wireless data transmission from cameras is not an
option due to its power overhead. Local elaboration and transmission of high-level
labeling information provides a more efficient usage of the available power, while
also granting greater availability in situations like disaster relief, where wireless
propagation might be non-ideal and enable only low-bandwidth communication.

Deployment of state-of-the-art deep CNNs on these devices naturally requires
external memory for the storage of weights and partial results. This memory
cannot be considered to be secure, as the weights deployed in the flash are
an important intellectual property, and UAVs are fully autonomous, therefore,
vulnerable to malicious physical attacks. Partial results stored in the FRAM
and SPI traffic could be monitored or modified by an external agent, with the
purpose of changing the final result classified by the UAV. Strong encryption for
weights and partial results can significantly alleviate this issue at the cost of a
huge overhead on top of the pure data analytics workload.

Here, we consider a deep ResNet-20 CNN [He+16] to classify scenes captured
from a low-power sensor producing a 224×224 input image. ResNet-20 has been
shown to be effective on CIFAR-10 classification but can also be trained for other
complex tasks, and it is in general, a good representative of state-of-the-art CNNs
of medium size. It consists of more than 1.35× 109 operations, a considerable
workload for a low-power end-node. External memory is required for both weights
(with a footprint of 8.9 MB considering 16 bits of precision) and partial results
(with a maximum footprint of 1.5 MB for the output of the first layer). All weights
and partial results are en-/decrypted with AES-2PRG; the Fulmine cluster is
considered the only secure enclave in which decrypted data can reside.

The figure also shows a breakdown of energy consumption regarding kernels
(convolution CONV, encryption AES-2PRG), densely connected CNN layers
(DENSE), DMA transfers and other parts of the CNN (DMA, other), and external

4.6. Use Cases 49

10
− 1

10
0

10
1

10
2

En
er

gy
[m

J]

7.47 mJ
1086 ms

4.83 mJ
691 ms 2.89 mJ

247 ms 2.00 mJ
178 ms 0.63 mJ

50 ms
0.59 mJ
47 ms

0.57 mJ
46 ms

50%

20% 26%

47%

32%
16%

33%

46% 14%
68%

20%

19%
13%

64%

20%
8%

68%

21%

70%

10
− 2

10
− 1

10
0

10
1

T
im

e
[s]

Local face detection, secured remote face recognition

CONV
ISAP
DENSE
DMA,other

En
er

gy
B

re
ak

do
w

n

1 core
1 core w/SIMD

4 core
HWCE 16x16b

HWCRYPT
HWCE 16x16b

HWCRYPT
HWCE 8x16b

HWCRYPT
HWCE 4x16b

4 core
4 core w/SIMD

ISAP 1 core
CONV 1 core

DENSE 1 core 1 core w/SIMD 4 core w/SIMD 4 core w/SIMD 4 core w/SIMD 4 core w/SIMD4 core w/SIMD

Figure 4.14: Local face detection, secured remote recognition use case based on the
12-net and 24-net CNNs from Li et al. [Li+15] on a 224×224 input image,
with full Isap encryption of the image if a potential face is detected.
cry-cnn-sw operating mode at VDD =0.8 V. We consider that the first
stage 12-net classifies 10 % of the input image as containing faces, and
that the second stage 24-net is applied only to that fraction.

memories and I/O (FRAM, Flash, SPI I/O)
Figure 4.13 shows the execution time and energy spent at 0.8 V for this

compound workload. We exploit the fast frequency switching capabilities of
Fulmine to dynamically switch from the cry-cnn-sw operating mode (at 85 MHz)
when executing AES-2PRG to the kec-cnn-sw operating mode (at 104 MHz)
when executing other kernels. The figure also shows a breakdown of energy
consumption regarding kernels (convolution CONV, encryption AES-2PRG),
densely connected CNN layers (DENSE), DMA transfers, and other parts of the
CNN (DMA, other), and external memory and I/O (FRAM, Flash, SPI I/O).
In the baseline, where all the workload is run in software on a single core, energy
consumption is entirely dominated by convolutions and encryption, with a 4-to-1
ratio between the two. When more features of the Fulmine SoC are progressively
activated, execution time is decreased by 114× and energy consumption by 45×,
down to 27 mJ in total - 3.16 pJ per equivalent operation (defined as an equivalent
OpenRISC instruction from [OPE12]). When CNNs use the HWCE with 4 bit
weights, and AES-2PRG uses the HWCRYPT, the overall energy breakdown
shows that cluster computation is no longer largely dominant, counting for only
slightly more than 50 % of the total energy. Additional acceleration would likely
require expensive hardware (e.g., more sum-of-products units or more ports in
the HWCE) and would yield diminishing returns in terms of energy efficiency.

To concretely estimate whether the results make it feasible to deploy a secure
ResNet-20 on a nano-UAV, consider that a CrazyFlie UAV [Bit22] can fly for up
to 7 minutes. Continuous execution of secure ResNet-20 during this flight time
corresponds to a total of 235 iterations in the operating point considered here.
This would consume a total of 6.4 J of energy - less than 0.25 % of the 2590 J
available in the onboard battery - and the low peak power of 24 mW makes this
concretely achievable in an autonomous device.

4.6. Use Cases 50

4.6.2 Local Face Detection with Secured Remote Recogni-
tion

Complete on-device computation might not be the most advantageous approach
for all applications, particularly for those that can be clearly divided in a lower
effort triggering stage and a higher effort one that is only seldom executed. A
good example is the problem of face recognition. While state-of-the-art face
recognition requires a significant workload in the order of billions of operations,
e.g., FaceNet [SKP15], the problem can be easily decomposed in two stages: one
where the input image is scanned to detect the presence of a face, and another
where the detected faces are recognized. The first stage could be run continuously
on a low-power wearable device such as a smartwatch, using an external device,
e.g., a smartphone or the cloud, to compute the much rarer and much more
complex second stage.

We envision Fulmine to be integrated into an Ultra-Low Power (ULP) smart-
watch platform similar to that presented in Conti et al. [Con+17a]. We consider
a similar camera to the one used in Section 4.6.1, producing a 224×224 input
image. Face detection is performed locally, using the first two stages (12-net
and 24-net) of the multi-stage CNN proposed by Li et al. [Li+15]. If faces are
detected by this two-stage CNN, the full input image is encrypted using Isap
and transferred to a coupled smartphone for the recognition phase. The networks
are applied to small separate 24×24 windows extracted from the input image;
partial results need not be saved from one window to the next. Therefore the
CNN does not use any external memory and can rely exclusively on the internal
L2.

Figure 4.14 reports the experimental results for the local face detection use
case in terms of energy and execution time. Baseline energy is almost evenly
spent between convolutions, Isap encryption, and densely connected CNN layers.
Software optimizations such as parallelization, SIMD extensions are much more
effective on convolutional and dense layers than they are on the Keccak-f [400]-
based Isap encryption. Using hardware accelerators essentially reduces the
energy cost of convolution and on Isap to less than 10 % of the total and leads
to a 24× speedup and a 13× reduction in energy with respect to the baseline.
With all optimizations, face detection takes 0.57 mJ or 5.74 pJ per elementary
operation. This face detection could be performed with no interruption for
roughly 1.6 days before exhausting the battery charge if we consider a small 4 V
150 mA h lithium-ion polymer battery. Duty cycling, taking advantage of the
power management features of the SoC described in Section 4.3, can prolong this
time considerably.

4.6.3 Seizure Detection and Secure Long-Term Monitoring
Extraction of semantically relevant information out of biosignals such as Elec-
tromyogram (EMG), Electrocardiogram (ECG), and EEG is a potentially huge
market for low-power footprint IoT end-nodes. Here, we consider a seizure detec-
tion application based on a Support Vector Machine (SVM) trained on energy

4.7. State-of-the-Art and Related Work 51

10
− 3

10
− 2

10
− 1

10
0

En
er

gy
[m

J]

1 core
1 core

50%

38%
7%

51%

41%

87%
7%

10
− 4

10
− 3

10
− 2

10
− 1

T
im

e
[s]

EEG-based seizure detection and secure long-term monitoring
0.38 mJ
52 ms 0.30 mJ

24 ms 0.18 mJ
12 ms

PCA
ISAP
DMA, other
DWT
SVM

En
er

gy
B

re
ak

do
w

n

ISAP
PCA, DWT, SVM

4 core
4 core

HWCRYPT
4 core

Figure 4.15: Electroencephalogram (EEG)-based seizure detection and secure data
collection. cry-cnn-sw operating mode at VDD =0.8 V.

coefficients extracted from the PCA of a multi-channel EEG signal [Ben+15;
Ben+16]. The sampling frequency is 256 Hz with 50 % overlapped windows, i.e.,
seizure detection is performed every 0.5 s. Starting from a 256-sample window
of 23 input EEG channels (represented as 32 bit fixed-point numbers), PCA
is applied to extract 9 components, which are then transformed by a Digital
Wavelet Transform (DWT) to extract energy coefficients, which are classified by
an SVM. For long-term monitoring, the components produced by the PCA have
to be collected and sent to the network to be stored or analyzed, which requires
encryption due to the sensitivity of this data.

Figure 4.15 shows the results in terms of energy (split down between the
various kernels) and execution time. Several components of PCA, like diagonaliza-
tion, are not amenable to parallelization. Nonetheless, we observe a 2.6× speedup
with four cores, excluding the encryption with Isap. Using the HWCRYPT, the
Isap-based encryption becomes a transparent step of the algorithm and essen-
tially disappears from the overall energy breakdown. Therefore, with combined
software parallelization and accelerated encryption, an overall 4.3× speedup and
2.1× energy reduction can be achieved. More importantly, the absolute energy
consumption of 0.18 mJ (12.7 pJ per operation) means that a typical 2 A h@3.3 V
pacemaker battery [MIR04] would suffice for more than 130 million iterations and
more than 750 days if used continuously - as for most of the time the Fulmine
SoC can be in deep sleep mode.

4.7 State-of-the-Art and Related Work
In this section, we discuss works related to our contribution, i.e., those proposing
low-power hardware Intellectual Property (IP) for encryption or IoT end-node
chips that constitute our direct point of comparison. Note that this comparison
was done during the time when Fulmine was built and was not updated later on.

4.7.1 Low-Power Encryption Hardware IP
Authenticated encryption is a hot topic in the cryptographic community since it
adds additional services on top of data confidentiality. AES in the Galois Counter

4.7. State-of-the-Art and Related Work 52

Mode (AES-GCM) [MV04] is one of the most used authenticated encryption
schemes today. For example, Intel added a dedicated finite field multiplication
to the AES-NI extension, with a throughput of up to 1.03 cpb [Gue13]. However,
solutions of this kind are clearly targeting a different scenario from small, low-
power IoT end-nodes.

Only a few IoT-oriented commercial AES controllers are available; an example
is the Maxim MAXQ1061 [Max17], claiming up to 20 Mbit/s (power consumption
data is not currently disclosed). Research AES accelerators in the sub-100 mW
range for the IoT domain have been proposed by Mathew et al. [Mat+14;
Mat+15] in Intel 22nm technology, Zhang et al. [Zha+16] in TSMC 40 nm and
Zhao et al. [ZHA15] in 65 nm; the latter reaches efficiency up to 620 Gbit/s/W
thanks to efficient body biasing and a statistical design flow targeted at reducing
worst-case guard bands. A device consuming as little as 0.25 µW for passive
RFID encryption has been proposed by Hocquet et al. [Hoc+11]. The main
differentiating point between our contribution and these hardware encryption
techniques is the tightly coupled integration within a bigger low-power system.

4.7.2 IoT End-Node Architectures
Traditional end-node architectures for the IoT leverage tiny microprocessors,
often Cortex-M0 class, to deal with the extremely low-power consumption re-
quirements of applications. Several commercial solutions have been proposed,
among the others, by TI [Tex22], STMicroelectronics [STM22], NXP [NXP22],
and Ambiq [Amb15], leveraging aggressive duty-cycling and sub-10 µW deep-sleep
modes to provide extremely low-power consumption on average. Other recent
research platforms also optimize the active state, exploiting near-threshold or sub-
threshold operation to improve energy efficiency and reduce power consumption
during computation [Bol+13; Mye+15; Pau+16; Roy+16].

Some commercial architectures leverage lightweight software acceleration and
optimized DSP libraries to improve performance. The NXP LPC54100 [NXP22]
is a commercial platform where a big Cortex-M4F core acts as an accelerator for
a little ultra-low-power Cortex-M0 targeted at always-on applications. From a
software viewpoint, some optimized libraries have been developed to efficiently
implement crypto algorithms on Cortex-M3 and M4 architectures, given the
criticality of this task for IoT applications. Examples of these libraries are
SharkSSL [Rea15] and FELICS [Din+19], which are able to encrypt one block
of AES-128-ECB in 1066 cycles and 1816 cycles, respectively, both targeting a
Cortex-M3. On the other hand, CMSIS [ARM10] is a well-known set of libraries
to optimize DSP performance on Cortex-M architectures.

However, even with software-optimized libraries, these tiny micro-controllers
are unfortunately not suitable for secure near-sensor analytics applications using
state-of-the-art techniques, which typically involve workloads in the orders of
billions of operations per second. For this reason, a few recent SoCs couple
programmable processors with hardwired accelerators to improve execution speed
and energy efficiency in cryptography and other performance-critical tasks. In the
field of embedded vision, heterogeneous SoCs of this kind include the one recently

4.8. Conclusion 53

proposed by Renesas [Nak+16], coupling a general-purpose processor with an
FPU, a DSP, and a signal processing accelerator. Intel [Wu+15] proposed a
14 nm SoC where a small core with light signal processing acceleration cooperates
with a vision processing engine for CNN-based feature extraction and a light
encryption engine within a 22 mW power budget. Pullini et al. proposed Mia
Wallace, a heterogeneous SoC [Pul+16] coupling four general-purpose processors
with a convolutional accelerator. In the field of bio-signals processing, Konijnen-
burg et al. [Kon+16] proposed a multichannel acquisition system for biosensors,
integrating a Cortex-M0 processor and accelerators for digital filtering, sample
rate conversion, and sensor timestamping. Lee et al. [LV13] presented a custom
bio-signals processor that integrates configurable accelerators for discriminative
machine-learning functions (i.e., SVM and active learning), improving energy by
up to 145x over the execution on CPU.

Similarly to the presented designs, Fulmine is a low-power, heterogeneous
Multi-Processor SoC (MPSoC). In contrast to the other architectures presented
here, it tackles at the architectural level the challenge of efficient and secure
data analytics for IoT end-nodes, while also providing full programmability with
sufficient high performance and low-power to sustain the requirements of several
near-sensor processing applications.

4.8 Conclusion
This chapter presented Fulmine, a 65 nm System-on-Chip targeting the emerging
class of smart secure near-sensor data analytics for IoT end-nodes containing
the HWCRYPT cryptographic hardware accelerator. HWCRYPT provides
different energy-efficient cryptographic modes of operation that provide fault
security at the algorithmic level. We achieve this without using aggressive
technology or voltage scaling but through the architectural solution of combining
cores and accelerators within a single tightly-coupled cluster. The use cases we
have proposed show that this approach leads to improvements of more than one
order of magnitude in time and energy with respect to a purely software-based
solution, with no sacrifice in terms of flexibility. The Fulmine SoC enables secure,
integrated, and low-power secure data analytics directly within the IoT end-
node. Without any compromise in terms of security, the proposed SoC enables
sensemaking in a budget of a few pJ/op - down to 3.16 pJ/op in one case, or
315 Gop/s/W.

The hardware accelerator within Fulmine provides two main engines: an
AES-based engine to provide a 2PRG-based stream cipher and a sponge engine
for encrypting data with Isap. Both encryption modes provide security against
DFA and DPA at the algorithmic level by combining a re-keying function with
an encryption mode or even an authentication mode. By using this accelerator,
all data that leaves the computing cluster can be encrypted securely, but this
can also be used for data that resides within the cluster domain. While this
approach still requires manual handling of data, i.e., the programming of the
DMA of HWCRYPT, we envision this approach to be used more transparently

4.8. Conclusion 54

in the future. In the following chapters, we follow an enhanced approach that
transparently protects certain parts of the system.

5
FIPAC: Control-Flow Protection with

ARM Pointer Authentication

While the cryptographic algorithms in the previous chapter are implemented in
hardware, they can also be implemented in software. One crucial property or
assumption for the correct execution of software is that all program instructions
execute in the correct order, i.e., there is a valid control-flow. If the control-flow
of a program is violated, i.e., there is a control-flow attack, it can lead to bypasses
of arbitrary security countermeasures up to full remote code execution.

Control-flow attacks can be performed purely in software by exploiting a
memory vulnerability to modify code pointers or return addresses. This strat-
egy allows an adversary to perform powerful Turing-complete attacks, such as
Return-Oriented Programming (ROP) [Sha07] or Jump-Oriented Programming
(JOP) [Che+10]. These software-based control-flow attacks have successfully been
used to attack many devices, from embedded devices to secure enclaves [HHF09;
Jal+20; Lee+17].

When also considering fault attacks, as we do in this thesis, the attack surface
of control-flow hijacks increases. Faults can manipulate the control-flow at a
much finer granularity rather than only on a course-grained indirect function level,
as it is the case for software-based control-flow attacks. Direct branches, calls,
or even only a few instructions are a target of fault-based control-flow attacks,
allowing an attacker to jump arbitrarily within the program. Consequently,
faults on the control-flow are used to bypass security defenses at a much finer
granularity [Fre11; Goo15; NCC; Tat+18; TSW16].

To solve this problem and to protect the software execution against control-flow
attacks, Control-Flow Integrity (CFI) aims to be a generic solution. Depending
on the threat model, CFI can exist at a course-grained indirect function level to

55

56

protect against software-based control-flow attacks or on a much finer granularity,
e.g., on basic block or even on the instruction level to cover fault-based control-
flow hijacks. Section 3.2 details CFI at different granularities for different threat
models. However, when it comes to combined attacks, i.e., a software vulnerability
is combined with a fault-based control-flow attack, only little research exists.
While there are protection mechanisms in this area [Cle+17; Wer+18], they
require intrusive hardware changes to the processor architecture and are, therefore,
not practical for general use.

This, however, stays in contrast with the rise and large-scale deployment
of ARM-based devices [ARMd]. ARM-based microarchitectures can only be
modified with expensive architectural licenses, which leaves many devices in
hostile environments remaining unprotected against a variety of control-flow
attacks. Currently, there are no protection mechanisms against software- and
fault-based control-flow attacks available that only require minimal hardware
changes or even can be designed with a standard unmodified instruction set.

When we started working on this topic, ARM introduced a new hardware
primitive named ARM Pointer Authentication (ARM PA) [ARMa], which allows
the software to sign and authenticate pointers and was shipping in the first
hardware designs, such as the Apple M1 processor [App21]. This hardware
primitive is originally intended to protect special code pointers, e.g., the return
address on the stack, against unintended manipulations, providing control-flow
protection on a very coarse-grained level. We asked ourselves: Can we use this
hardware primitive to develop a much stronger protection scheme that protects
the control-flow of a program against software and fault attacks?

Contribution
We present FIPAC, a software-based CFI scheme protecting the execution at basic
block granularity of ARM devices against software and fault attacks. FIPAC’s
threat model considers an attacker hijacking the control-flow on basic block level,
independent of the attack methodology. We address this threat model and protect
the control-flow by implementing a basic block level CFI protection scheme using
a keyed state update that is resistant to memory bugs. FIPAC cryptographically
links the sequence of basic blocks at compile-time and verifies the executed
sequence at runtime. We exploit ARM Pointer Authentication of ARMv8.6-A
for efficient linking and verification. We provide an LLVM-based toolchain to
protect programs without user interaction against control-flow attacks on basic
block level. We validate the prototype using a simulator supporting ARMv8.6-A.
To evaluate the runtime performance of FIPAC, we emulate the overheads of
ARM PA instructions and run SPEC 2017 and other embedded benchmarks
on existing hardware. Moreover, we provide a security evaluation and discuss
different security policies. Summarized, our contributions are:

• We present an efficient basic block granular CFI protection scheme for
ARM-based systems protecting the control-flow against fault and software
attacks.

5.1. ARM Pointer Authentication 57

• We present a prototype implementation exploiting the ARM Pointer Au-
thentication of the ARMv8.6-A.

• We provide a custom open-source1 LLVM-based toolchain to automatically
instrument and protect arbitrary programs.

• We perform a functional and performance evaluation based on SPEC 2017
and other embedded benchmarks and discuss different security policies.

Scientific Contribution

Chapter 5 is primarily based on the following publication that was pre-
sented at COSADE 2022 in Leuven (Belgium).

Robert Schilling, Pascal Nasahl, and Stefan Mangard. “FIPAC: Thwart-
ing Fault- and Software-Induced Control-Flow Attacks with ARM Pointer
Authentication.” In: Constructive Side-Channel Analysis and Secure
Design - 13th International Workshop, COSADE 2022, Leuven, Bel-
gium, April 11-12, 2022, Proceedings. Springer, 2022, pp. 100–124. doi:
10.1007/978-3-030-99766-3_5

I am the main author of this paper, wrote the majority of the text,
developed the toolchain prototype, and performed all the experiments.
Pascal Nasahl contributed to the text and to the evaluation setup of
the SPEC benchmark. Stefan Mangard supported the project in many
discussions.

Outline
This chapter is structured as follows. Section 5.1 introduces the details of
ARM PA, which was originally designed to counteract software-based control-
flow attacks. Section 5.2 discusses the threat model we are considering in this
chapter and analyzes the state-of-the art. Section 5.3 presents the design of
FIPAC and discusses its main requirements. Section 5.4 discusses the prototype
implementation of FIPAC exploiting existing architectural features of the ARMv8
instruction set. We discuss the security guarantees of FIPAC and present the
performance numbers of the prototype implementation in Section 5.5. Section 5.6
presents existing attacks and shows how FIPAC mitigates them. Section 5.7
discusses how FIPAC can be used to protect compile-time known data. Finally,
Section 5.8 mentions possible future work, and Section 5.9 concludes this chapter.

5.1 ARM Pointer Authentication
ARM Pointer Authentication (ARM PA) is a hardware feature introduced with
ARMv8.3A [ARMa] and updated in ARMv8.6A [ARMb]. This extension pro-
vides new instructions to cryptographically sign and authenticate data. These

1Available at https://github.com/Fipac/Fipac

https://doi.org/10.1007/978-3-030-99766-3_5
https://github.com/Fipac/Fipac

5.2. Threat Model and Attack Scenario 58

instructions derive a Message Authentication Code (MAC) using a secret key,
a 64-bit modifier, and the value of a provided register, e.g., an address stored
in a pointer. A fraction of this MAC, called the Pointer Authentication Code
(PAC), is then stored in the upper bits of the provided register. By using the
authentication instructions, the authenticity of the MAC and the data in the
register can then be verified. The size of the PAC depends on the configuration
of the virtual address system and can range from 11 to 31 bits.

ARM PA can be used for different purposes, but one of the first use cases was
return address signing, developed by Qualcomm [Qua17]. During the function
prologue, they sign the function return address that is stored in the link register
before storing it to the stack. The function epilogue then uses the authenticate
instruction of ARM PA before doing the function return. This instruction
recomputes and validates the MAC that is stored in the return address. If the
operation succeeds, the MAC is stripped, and the return is performed accordingly.
However, if the MAC verification fails, e.g., because the return address was
overwritten on the stack due to a buffer overflow, the pointer gets invalidated.
When using such an invalid pointer, i.e., when doing the return, the system traps
and detects the stack-smashing attack. This mechanism is already built into
upstream compilers of GCC [Fre20; GCC23] and LLVM [LLV19; LLV23].

While the previous mechanism of ARM PA is already available in upstream
compilers, this primitive is also used in research projects. Most prominently,
PARTS [Lil+19] uses ARM PA to sign arbitrary code- and data pointers, providing
pointer integrity in the system. Before using a signed pointer, the pointer is
authenticated and validated, thus prohibiting the use of a manipulated or forged
pointer. PACmem [Li+22] or PACSafe [HZH22] use the primitives from ARM
PA to implement spatial and temporal memory safety for C or C++ programs.
More recently, ARM PA has been used to protect data that is spilled on the
stack, providing data integrity for spilled registers [Fan+22]. All in common,
these protection mechanisms use ARM PA to extend the scope of protection
within the software threat model.

5.2 Threat Model and Attack Scenario
This section presents the threat model we consider, shows how it bypasses existing
Software CFI (SCFI) and Fault CFI (FCFI) protection schemes, and then states
the required properties for secure SCFI protection schemes. Eventually, we discuss
the required properties for a secure CFI scheme protecting against software and
fault attackers.

5.2.1 Threat Model
FIPAC considers an attacker performing software- and fault-based attacks with
the goal to redirect the control-flow. This attacker aims to hijack direct or indirect
control-flow transfers, i.e., the threat model of FIPAC covers all transfers between
basic blocks of the program, i.e., direct, indirect, and conditional branches, direct

5.2. Threat Model and Attack Scenario 59

and indirect calls, and arbitrary jumps. We consider attacks on the control-flow
independent of the methodology, i.e., we cover physical- and software-induced
fault attacks on the control-flow as well as software-based control-flow attacks.
We expect the CFI protection to detect control-flow deviations to avoid further
exploitation. The detection rather than its prevention aligns with threat models
of related FCFI protection schemes. The attacker has binary access and can read
all instructions and data. This threat model includes software attackers using
this information to exploit a memory bug to conduct a control-flow hijack, e.g.,
manipulating code pointers to perform ROP or JOP. We assume ARM Pointer
Authentication to be cryptographically secure and that its keys are isolated from
user applications.

We only consider control-flow hijacks on the Control-Flow Graph (CFG)’s
edges, so we exclude attacks within a basic block, e.g., instruction skips. However,
our assumed threat model aligns with several real-world exploits [Car+19; Goo15;
NT] hijacking the control-flow at these edges. Nevertheless, as security-critical
code can still require stronger protection, we discuss the usage of FIPAC at
instruction granularity in Section 5.8. Data-Oriented Programming (DOP) or
faults on the data or the computation are not in the scope, including data
used during a conditional branch or data used in cryptographic algorithms. To
protect them, it requires orthogonal defenses, e.g., data encoding or instruction
replication. We discuss the protection of conditional branches within a state-based
CFI protection scheme in Chapter 7. For full fault protection, a combination
of both the protection of data and processing and control-flow protection like
FIPAC is required.

5.2.2 Attack Scenario
We show how existing CFI protection schemes can be bypassed in the stated
threat model. The details of these CFI countermeasures are already discussed in
Section 3.2.1 and Section 3.2.2, respectively.

Bypassing SCFI

Most SCFI protection schemes [Aba+05; Eva+15; Lil+19; Lil+21; Tic+14; ZS13],
as presented in Section 3.2.1, do not consider faults in their threat model and,
therefore, can be bypassed with a single fault. As the programs’ code section is
immutable, SCFI protection schemes only protect indirect control-flow transfers
but not direct calls and other branches. Hence, a targeted fault to the code
segment of a program or directly within the execution, e.g., a fault on the program
counter or the immediate value of a direct call, cannot be detected by SCFI.

Bypassing FCFI

The threat models of software-based FCFI protection schemes do not consider
classical software attackers. Contrary to SCFI [Aba+05] (cf. Section 3.2.1),
where memory is considered to be vulnerable, typical FCFI protection schemes,

5.2. Threat Model and Attack Scenario 60

A
ret
B

Update(S,SigB):

S=SB

r1←SigB

S←S⊕r1

S
=

S
A

1

S=SA1

S=SA1⊕SigB

S=SB

=SB

Update(S,SigA)S=SA

r1←userinp

...S=SA1

call B
...S=SB

Check(S,SB)

Figure 5.1: Valid control-flow.

as discussed in Section 3.2.2, do not include this in their threat model. An
attacker exploiting a memory bug can tamper the CFI state, which is maintained
in software. As the state update function is known, an attacker-controlled CFI
state can be crafted. Even a naïve combination of SCFI and FCFI, secure in
their threat model, can be bypassed (Section 5.5.2) with a combined software-
and fault-based control-flow attack. To highlight the conceptual weaknesses of
FCFI protection schemes, we demonstrate an attack bypassing FCFI with its
state update function. Such a state update function is presented in Algorithm 1
in Section 3.2.2 and is similarly used in many software-based FCFI protection
schemes [OSM02]. They compute their CFI states in software and load them into
a register at some point in the program. The goal is to exploit this instruction
sequence of the state update to manipulate the CFI state to an attacker-defined
value, i.e., bypassing CFI.

In the following, we discuss the attacker scenario for a control-flow hijack.
Without an attacker, Figure 5.1 shows a valid control-flow transfer, where basic
block A calls B. When entering B, the state update function updates the global
state S to the beginning state SB by XORing SigB to S. After returning from
basic block B, a CFI check verifies that S equals the pre-computed state SB .

In Figure 5.2, we consider an attacker redirecting the control-flow of the call
from basic block B to C. At the beginning of basic block C, the state update
XORs the current state S with the signature C. As this state S = SC deviates
from the pre-computed state SB , the control-flow hijack can be detected in the
final check.

Figure 5.3 shows a successful attack on the control-flow, bypassing FCFI. The
attacker controls register r1, e.g., it is used to store user input, or it is modified
due to a memory bug or fault. The adversary again redirects the control-flow from
basic block B to C but omits the signature load to r1. Since r1 is controlled by the
attacker, who knows all states and signatures, the final state of C can be forged to
match the end state of B. Eventually, the final CFI check in basic block A cannot
detect the control-flow hijack. Note that the control-flow redirect in Figure 5.2
or Figure 5.3 can either be performed with a software-based control-flow attack
or by fault-based one.

5.2. Threat Model and Attack Scenario 61

A

ret
C

Update(S,SigC:

ret
B

Update(S,SigB):

S
=

S
A

1

S=SCS=SC

=SC

Update(S,SigA)S=SA

S=SA1⊕SigC

r1←userinp

...S=SA1

call B
...S=SC

Check(S,SB)

r1←SigC
S←S⊕r1

Figure 5.2: Detectable control-flow attack.

A

ret
C

Update(S,SigC:

ret
B

Update(S,SigB):

S
=

S
A

1

S=SCS=SC

=SC

Update(S,SigA)S=SA

S=SA1⊕SigC

r1←userinp

...S=SA1

call B
...S=SC

Check(S,SB)

r1←SigC
S←S⊕r1

Figure 5.3: Successful control-flow attack.

5.2.3 CFI against Software- and Fault-Based Control-Flow
Attacks

To protect the system against software and fault attacks and to enable large-scale
usage, CFI protection schemes need to fulfill the following requirements:

1. The defense needs to enforce the CFI at a fine granularity, i.e., at least on
basic block level, to protect from a fault attacker.

2. The proper selection of the CFI state update function is essential, as it
directly influences the security of the CFI scheme. Choosing a weak state
update function, e.g., an XOR, allows an attacker to bypass the protection.
An attacker reading the binary is able to recompute the CFI states for all
locations of the program and can bypass the CFI scheme, as discussed in
Section 5.2.2. Thus, it is required that CFI states are not known to the
attacker and cannot be recomputed even when having access to the binary.
Furthermore, the state update function must be accumulating, meaning
that the next CFI state depends on the value of the previous CFI state.

5.3. Design of FIPAC 62

3. The protection should not require hardware changes and can be implemented
in software to make the protection deployable for a wide range of devices.

4. To support legacy codebases and to enable easy deployment, the protection
must be applied automatically, i.e., during compilation, and must not
require source code changes.

Since such a countermeasure provides protection against software- and fault-
based control-flow attacks, we denote it as a Software-Fault CFI (SFCFI) protec-
tion scheme. Previous fine-grained CFI protection with keyed update functions,

which can detect software- and fault-based control-flow hijacks, require expen-
sive hardware changes and are unsuitable for commodity devices. For example,
Sponge-Based Control-Flow Protection (SCFP) [Wer+18] performs software
encryption on the instruction level and dynamic decryption during the software
execution. During the compile-time, the toolchain automatically encrypts the
program on instruction granularity. At runtime, the system decrypts the program
but keeps the previous instruction history in mind, i.e., there is authentic de-
cryption of all instructions. Only when executing all previous instructions in the
correct order the decryption of the next instruction succeeds. To deal with the
performance overhead, SCFP adds a dedicated pipeline stage to the prototype
implementation of their RISC-V processor. This pipeline stage is responsible
for decrypting the instruction stream on instruction granularity and performing
special handling of control-flow instructions.

A similar approach is called SOFIA [Cle+16], which provides cryptographically-
supported CFI protection on instruction-level. However, their design splits up
the encryption and verification rather than using an authentic encryption that
incorporates the instruction history. To cope with the performance penalty, the
prototype implementation again requires intrusive hardware changes on their
SPARC processor platform.

Unfortunately, both schemes require intrusive hardware changes in the pro-
cessor and are therefore inapplicable for large-scale deployment. Hence, there is
a need for efficient CFI protection schemes considering software- and fault-based
control-flow attacks, which do not require hardware changes.

5.3 Design of FIPAC
This section presents FIPAC, an efficient software-based CFI solution for ARM-
based devices, fulfilling the abovementioned requirements. We first show the
state-based CFI concept based on the work of Wilken and Shen [WS88; WS90]
and then discuss how indirect calls are protected. Finally, we discuss the selection
of the state update function and the check placement in the program.

5.3. Design of FIPAC 63

B
D

Update(SB,SigD)

Patch(SD,DP)

Update(SA,SigB)

C
Update(SB,SigC)

E
Update(SC,SigE)

Patch(SE,EP)

F
Update(SA,SigF)

Check(SF,FC)

S=SF

S=SB
S=SD

S=SC

S=SC

S=SE

S=SABegin

A

Update(S,SigA)

S=SABegin
S=SA

Figure 5.4: Justifying signature for control-flow merges.

5.3.1 Signature-Based Control-Flow Integrity
FIPAC is a state-based CFI protection scheme where every basic block in the
program corresponds to a well-defined CFI state. This state is maintained globally
through the program execution. The CFI state is checked to match the expected
state at certain program locations, indicating that no control-flow error occurred.
To consider the history of the execution-flow, the next CFI state is linked with
the previous one, allowing FIPAC to enforce the CFG.

Programs do not have a linear control-flow but contain control-flow transfers,
such as conditional branches, loops, or calls. Depending on which program path
is executed, the CFI state for a certain basic block differs since it has more than
one predecessor. When the control-flow merges, i.e., for conditional branches, two
different paths of CFI states merge and would turn into a state collision. To avoid
that, we adopt generalized path signature analysis from Wilken and Shen and
insert justifying signatures for correction. Figure 5.4 shows a conditional branch,
where the control-flow merges in basic block E, and a loop, which control-flow
merges in A. At the end of basic block D, there is a state patch with Dp, ensuring
the CFI state at the beginning of basic block E is the same, whether coming
from basic block C or D. These update values are stored in the program code and
are applied at runtime. The same approach is used to deal with loops, which
effectively boils down to conditional branches. E.g., basic block E jumps back
to A, forming a loop. Thus, a patch Ep is inserted at the end of basic block
E, correcting the CFI state to SABegin

. At the end of basic block F, a check
compares the actual state with the expected value FC.

Direct Calls

Direct function calls require special handling of the justifying signatures. In
Figure 5.5, function A directly calls function B. To support calling B from multiple
call sites, the beginning state of B always needs to be the same. Thus, we apply
a justifying signature at the call site before the direct call, transforming the call

5.3. Design of FIPAC 64

ret S=SBend

...

A

Update(S,A)

call B

Check(S, SEND)

patch(S,AI)

...

S=SA

S=SBbegin

S
=

S
B

en
d

S=SBend

S=SBbegin

S
=

S
B

b
eg

in

B

Figure 5.5: CFI state patch for direct calls.

site’s CFI state to the beginning state of function B. In this example, the patch
operation before the call transforms the CFI state of A to the beginning state of
function B. When returning, the CFI state continues with the end state of the
called function, here SBend

. Note this approach of placing justifying signatures is
similar to conditional branches, where at a control-flow merge, all edges, except
one, have a state update. Although we place a justifying signature before every
function call, in theory, one function call would also work without a state update.
However, deciding which call site omits the signature update is a challenging
problem during compilation and therefore is left out. Additionally, this can also
lead to problems when dealing with external libraries.

Indirect Calls

Indirect calls require special handling of signatures, which is not covered by the
work of Wilken and Shen. Determining the exact function that is being called
during the indirect call is not always possible at compile-time. Indirect calls can
also call different functions from the same call site, e.g., a function pointer is
given as a parameter to the function and is then called inside. The best that
FIPAC can do is to determine a possibly over-approximated set of potential call
targets and enforce that the indirect call can only call one of them. Then, FIPAC
enforces that the indirect call can only call one of these functions. Figure 5.6
shows the patching for indirect calls and the interaction with direct calls.

To provide the CFI for indirect calls, FIPAC determines an intermediate CFI
state SI for every set of indirectly called functions. This can also lead to merging
sets if the same function is called indirectly from different call sites. When
performing an indirect call, the call site A, in 1 , first patches its state SA to an
intermediate state SIbegin

, the same for all possible call targets of this indirect
call. In 2 , the indirect call is performed. At the beginning of the indirectly called
function B, we transform the state, in 3 , from the intermediate state SIbegin

to
the beginning state of SBbegin

. Furthermore, in 4 , we set up the patch value used
for the function return. We jump over the direct call entry in 5 and continue
the execution of B until the return patch in 6 . This patch transforms the end
state SBEnd

of B to the common intermediate return state SIEnd
followed by a

return. The caller A uses the pre-call signature SA, which was saved, for a state
update in 7 , to transform the intermediate return state to a unique state for A.
Note the call site could simply continue with the execution using the state SIend

.

5.3. Design of FIPAC 65

A

Update(S,A)S=SA

icall B

Check(S, SAEND)

patch(S,AI)

patch(S,SA)
...

S=SIbegin

patch(S,B) S=SIbegin

retPatch 0

retPatch SBend
⊕SIend

ret
patch(S,retPatch)

S=SIend

S=SBend
...

S
=

S
I e

n
d

S=SIend

S=SAIend

C

Update(S,C)

call B

Check(S, SCEND)

patch(S,CI)

...

S=SC

S=SBbegin
S=SBend

S=SBend

S=SBbegin

S
=

S
B

en
d

S
=

S
I b

eg
in

Indirect Call Direct Call

1

2

3

4

5

6

7

I
II

III

B

Figure 5.6: CFI state patch for indirect calls.

However, this would introduce undetectable control-flow vulnerabilities between
different indirect call sites of the same function. Therefore, the patch with SA

is necessary to avoid different call sites continuing with the same signature and
ensure that the function was actually called. The call site continues with the
execution using the state SAIend

= SIend
⊕ SA, different for every call site.

Since any function must be callable with direct or indirect calls, the handling
of indirect and direct calls interacts. On the right of Figure 5.6, we show how
C calls B directly. In I , a justifying signature is applied to transform C’s CFI
state to the beginning state SBbegin

of B. The direct call does not jump to the
beginning of B. Instead, it jumps to a dedicated entry point setting up the return
patch retP atch to be zero (II), and continues with the execution of B. At the
end of the function in III , the return patch retP atch is applied. Since the patch
value is zero, this statement does not affect the state which remains SBend

. After
the return, the call site then continues with the execution using the state SBend

.

5.3.2 State Updates with ARM Pointer Authentication
As discussed in Section 5.2.3, the state must not be computable by the attacker
and must depend on all previous CFI states. FIPAC uses a chained cryptographic
MAC for the state update function to solve this problem. Thereby, we bind
the security of FIPAC to a secret cryptographic key, which is unknown to the
attacker and isolated by the Operating System (OS). Only knowing this secret
key allows an attacker to recompute the CFI states and mount an attack. As
discussed in the threat model, it requires that the state update function is a
keyed cryptographic primitive to mitigate the recomputation of the CFI states
by an attacker with read access to the binary. To efficiently implement such
a cryptographic function, we exploit ARM PA, introduced in ARMv8.3-A and
updated in ARMv8.6-A [ARM20] with EnhancedPAC2 and FPAC [ARM20]. It is
designed to cryptographically sign pointers with a PAC and verify their integrity
before using it [Qua17]. The PAC is computed as the MAC over the pointer and
a modifier using the QARMA [Ava17] tweakable block cipher. Although pointers
are 64-bit values, the size of the virtual address space limits the actual size of
the pointer values. In AArch64 Linux, the virtual address space is typically
configured for 39 or 48-bit [Mar20], leaving the upper bits unused. The PACIA

5.4. Implementation 66

instruction of ARM PAhe PAC value in the unused upper bit, thus having no
storage overhead.

To use Pointer Authentication, ARMv8.6-A was extended for computing and
verifying a PAC. The instructions PACI* and PACD* use the destination register
as input, the source register as a modifier, and XOR the PAC in the upper bits
of the destination register. The PAC can be verified by using the AUTI* and
AUTD* instructions. On a successful verification, the PAC is removed from the
address, and the pointer can be used. If the verification fails, AUT* instructions
trap (this is different from ARMv8.3-A, which only sets an error bit).

the PACIA instruction of ARM PAused in Apple’s iOS [App20], as well as in
the Linux kernel [Rut17]. Moreover, upstream compilers such as LLVM [LLV19;
LLV23] and GCC [Fre20; GCC23] provide support for PAC. Recently, also
RISC-V designs were extended to provide similar mechanisms to ARM Pointer
Authentication [Sug20].

This work uses the PACIA instruction of ARM PA to implement the state
update function rather than sign pointers. This extension fulfills the requirements
needed for the state update. It uses a keyed mechanism and brings in the
accumulating functionality required to link subsequent states. We further discuss
the use of the PACIA instruction of ARM PA in Section 5.4.1.

5.3.3 Placement of Checks
Although the CFI check placement is essential for the security of the CFI scheme,
there is no general solution for the correct placement. However, at minimum,
there needs to be one check at the end of the program. For programs that do not
return, i.e., server programs, at least one CFI check in the main event loop is
needed. This strategy, however, has the longest detection latency and the worst
detection probability. To reduce the detection latency and improve the detection
probability of CFI errors, more CFI checks are required. However, the granularity
is a trade-off between overheads and security. The more checks inserted, the more
overhead, but also better detection probability and lower latency. At worst, a
check is placed at the end of every basic block, yielding the best security but the
worst runtime and code performance. In between, there exist arbitrary policies
with different trade-offs. For example, a generic policy places a CFI check at the
end of each function. Even fully custom strategies for placing checks are possible.
With the help of dynamic runtime profiling, a compiler can place the checks more
efficiently. E.g., a policy can place a check after every 100th basic block.

5.4 Implementation
In this section, we discuss the prototype of FIPAC based on ARMv8.6-A and
discuss the custom LLVM-based toolchain. First, we discuss the overall imple-
mentation based on ARM Pointer Authentication. Then, we present our custom
toolchain based on a modified LLVM compiler and a post-processing tool deriving
all signature values of the program.

5.4. Implementation 67

5.4.1 System Implementation
FIPAC computes a rolling CFI state throughout the program’s execution imple-
mented in software on top of ARMv8.6-A without hardware changes. FIPAC
exploits the ARM PA instruction set extension to implement the cryptographic
state update function. The PACI* and PACD* instructions cryptographically
compute a MAC over a pointer and a modifier register and store the result in
the upper bits of the pointer. In ARMv8.6-A, these instructions do not simply
replace the upper bits of the pointer with the computed MAC but instead, XOR
them to the existing upper bits. Algorithm 2 shows the simplified behavior of
the PACIA instruction ignoring that the configuration bit 55 is excluded from the
PAC.

Key Management

ARM Pointer Authentication includes five keys containing the generic key,
the instruction, and data keys A and B. By utilizing PACIA, FIPAC uses the
APIAKey, which is managed in the kernel (EL1) and not accessible from user mode
(EL0) [Qua17]. To provide CFI protection with FIPAC for the kernel, the key
management can be delegated to a higher privilege level, e.g., EL2. As ARM PA
instructions do not differentiate privilege levels, these instructions can be used in
EL0 and EL1. To prevent cross-EL attacks [Aza19], FIPAC-protected user and
kernel tasks can either use different keys for each privilege level (e.g., APIAKey
for EL0 and APIBKey for EL1), or the key manager in EL2 could swap the keys on
mode transitions. As the key needs to be known at compile-time, the prototype
implementation of FIPAC statically configures the APIAKey in a kernel module in
EL1. We discuss the dynamic configuration of the ARM PA keys in Section 5.8.

Interrupts

FIPAC supports interrupts and CFI interactions without any change. When an
interrupt diverts the control-flow to the kernel, it saves all registers of the user
application, including the current CFI state. The CFI state is restored after
resuming from the interrupt, allowing the program to continue.

Algorithm 2 Simplified behavior of PACIA in the 15-bit configuration.
1: function pacia(Xd, Xm)
2: PAC[63:0] ← ComputePAC(Xd[47:0], Xm, K)
3: Xd[63:48] ← Xd[63:48] ⊕ PAC[63:48]
4: Xd[47:0] ← Xd[47:0]
5: end function

5.4.2 CFI Primitives
We first discuss the CFI primitives based on the ARM instruction set, and then
show how they protect different control-flow instructions.

5.4. Implementation 68

CFI State and Updates

Instead of signing a pointer with PACIA, we use it to compute the CFI state.
The upper bits of a PACIA computation (the size depends on the virtual memory
configuration, but we use a 15-bit configuration), the PAC bits, denote our CFI
state. To accumulate the CFI state, the PACIA instruction is always executed on
the same “pointer”, in our case, the CFI state is stored in Xd. The PACIA, Xd,
Xn instruction computes a PAC of register Xd with Xn as a modifier and XORs it
to the upper bits of Xd. For each basic block, a unique identifier, i.e., the Program
Counter (PC), is used as the modifier Xm for this instruction. By subsequently
XORing the new CFI state to the previous one, we create a dependency link
between succeeding basic blocks. We store the global CFI state in the exclusively
reserved general-purpose register x28, which cannot be used by the rest of the
program.

Listing 5.1 shows the CFI state update, placed at the beginning of each
basic block. ADR, x2, #4 first loads a unique constant for the basic block to a
temporary register x2, in this case, the program counter. We use this constant
to compute a new PAC, which gets XORed to the previous CFI state in x28.

1 adr x2, #4
2 pacia x28, x2

Listing 5.1: State update with PACIA.

Note that FIPAC can also be implemented using the original ARM PA
instruction set extension of ARMv8.3-A. However, the ARM PA instructions in
this version simply replace the upper bits in the pointer with the PAC, omitting
the linking functionality we need for FIPAC. To create a dependency between
the previous and the current CFI state, the linking mechanism needs to be
implemented manually in software. However, this requires more instructions and
thus impacts the code size and runtime performance.

State Patches

As discussed before, it requires justifying signatures for control-flow transfers
such as conditional branches or calls. To inject a justifying signature needed
for control-flow merges, we use the instruction sequence from Listing 5.2. In
Listing 5.2, we show the instructions for such a patch update. We load an
immediate constant to a temporary register in x2, which gets XORed to the
CFI state in x28, thus correcting it to a target state. The computation of this
immediate constant happens during the post-processing stage, as discussed in
Section 5.4.4. Note that an XOR applied to a valid PAC value generates an
invalid PAC, which needs to be corrected before verification.

1 mov x2, #patch
2 eor x28, x28, x2

Listing 5.2: CFI state patch.

5.4. Implementation 69

State Checks

A check compares the current CFI state with the expected state at this program
location and executes an error handler on a mismatch. Such instruction sequences
typically involve conditional branches, which slows down the program execution,
as they impact the instruction pipeline. We also exploit the ARM PA instructions
for efficiently performing the necessary CFI checks. Similar to generating a PAC,
ARM also provides AUTI* and AUTD* instructions to verify the integrity of PACs.
In ARMv8.6-A, these instructions even trap on an invalid PAC verification.
Since we use PACIA to compute a PAC, it is tempting to use AUTIZA directly
for verification. However, the CFI state in x28 is not a valid PAC value in the
classical sense. Instead, it is an accumulated XOR-sum of many valid PAC values
that combined does not form a valid PAC anymore. Thus, we cannot directly
use the AUTIZA instruction to verify the CFI state.

1 mov x2, #const
2 eor x2, x28, x2
3 autiza x2

Listing 5.3: CFI check with AUTIZA.

At every location in the program, we know the expected CFI state at compile-
time. Thus, we can compute a differential constant, which is XORed the CFI
state, transforming it to a valid PAC. By applying this constant to the CFI
state, we receive a valid PAC that can be verified with AUTIZA. This constant
is determined in the post-processing tool and explained in Section 5.4.4. In
Listing 5.3, we show the corresponding assembly sequence. We first insert an
instruction sequence that patches the current CFI state to a valid PAC value
using a constant for this program location. Then, we use the AUTIZA instruction
to verify the integrity of this PAC value. On a control-flow deviation, applying
the constant to the incorrect CFI state in x28 generates an invalid PAC, which
the AUTIZA instruction detects. If the check fails, AUTIZA traps and stops the
program.

CFI checks can be placed arbitrarily within the program. FIPAC supports
three strategies: one check at the end of a program, a check at the end of every
function, or a check at the end of every basic block. The check strategy directly
impacts performance and security, which is discussed in Section 5.5.

5.4.3 Protection of Control-Flow Instructions
We now discuss how the CFI primitives are used to protect different control-flow
instructions. At the beginning of each basic block, we insert the sequence for
an ARM PA-based CFI state update, as shown in Listing 5.1. This instruction
sequence uniquely updates the CFI state for the current basic block based on
the previous state value. For all CFI primitives, the compiler emits metadata
to a custom Executable and Linkable Format (ELF) section that is used by the
post-processing step.

5.4. Implementation 70

Protection of Direct Branches, Jumps, and Conditional Branches

These control-flow instructions create control-flow merges, where state collisions
occur. At control-flow merges, our compiler instruments those instructions and
inserts the state patches for justifying signatures. Note the actual patch values are
left to be zero, and final patch values are determined during the post-processing,
as discussed in the next section. To identify the locations of patches, we compute
the inverted maximum spanning tree over the edges of the CFG, defining the
patch locations.

Direct Calls

Direct calls are instrumented with state patches at the call site, transforming
the state to the beginning state of the called function. When returning from a
directly called function, the caller’s CFI state continues with the callee’s end
state. Note that functions are instrumented to only have single return nodes.

Indirect Calls and Returns

At the call site, indirect calls are instrumented to stack the current CFI state
and patch the state for the intermediate state for this set of indirect calls. When
returning, the pre-call state saved on the stack is retrieved and XORed to the
CFI state to provide a link over the indirect call.

Indirect calls require more complicated instrumentation besides the call site.
As discussed in Section 5.3.1, the function header of an indirectly called function
needs to set up the patch value used during the function’s return. However, a
function generally does not know how it was called and must support being called
directly and indirectly. We solve this problem by adding a second function entry
point, one for direct calls and the second one for indirect calls.

We add a custom function entry for indirect calls in the compiler, shown in
Listing 5.4. This entry patches the intermediate state of the indirect call to the
beginning state of the called function (Line 1-3). We then load the CFI update
patch (Line 4), used during the function’s return, and jump, in Line 5, over the
direct call entry point. When the function is called directly, it jumps to the direct
call function entry in Line 6, setting up a zero-patch for the return. During the
function return, Line 8 uses the previously set up return patch. For direct calls,
where the return patch is zero, this statement has no effect, but for indirect calls,
it patches the end state to the intermediate return state. The compiler is unaware
that the inserted instructions have control-flow and implement a second function
entry. Thus, direct calls also use the second entry point, which is exclusively for
indirect calls. We correct this during the post-processing, where all direct calls
get rewritten to the second entry.

5.4.4 Toolchain
Related work [CFC; Sch+18a; WWM15] either uses the compiler or dedicated
binary post-processing tools for the instrumentation. Our prototype toolchain

5.4. Implementation 71

1 mov x1 , #I_PATCH ; Indirect call entry point
2 eor x28 , x28 , x1 ; Patch to beginning state of function
3 mov x1 , #RET_PATCH ; Load return patch
4 b #8
5 mov x1 , #0 ; Direct Call entry point
6 ... ; sets up zero patch
7 eor x28 , x28 , x1 ; Apply return patch
8 ret

Listing 5.4: Function entry points for indirect and direct calls.

PP
4

C
2

Libraries

Assembly KA

Instrumented binary
without patch and
and check values

In
s
tr
u
m
e
n
te
d

B
in
a
ry

P
ro
g
ra
m 1 3 5

Figure 5.7: Custom toolchain to build protected binaries.

uses a combination of both approaches, shown in Figure 5.7. We use a custom
compiler 2 based on the LLVM compiler framework [LA04] to insert all neces-
sary state update and patch instructions using two backend passes during the
compilation of a program 1 . We extend the AArch64 backend and reserve the
general-purpose register x28, which is exclusively used to store the CFI state,
disable tail calls, and ensure that functions have only a single return point. The
compiler emits an instrumented ELF binary 3 , but the concrete state patches
and check values are set to zero. In the second step, we use a post-processing
tool (PP) 4 , which has access to the compiled and linked binary to compute all
expected states and insert the patch updates.

The toolchain supports instrumented or non-instrumented libraries, but only
instrumented libraries have CFI. Instrumented libraries must be linked statically
such that the PP tool can replace the patch and check values in the binary. The
toolchain also supports inline assembly and external assembler files. However,
the programmer’s responsibility is to insert the necessary state update and patch
sequences into the assembly code. If the assembly code is not instrumented, the
code is still fully functional but does not have CFI protection. The toolchain
currently supports the instrumentation of programs written in C. However,
extending the support to other languages supported by LLVM, e.g., C++ or
Rust, only requires more engineering work but no changes to the design of FIPAC.

5.5. Evaluation 72

Post-Processing Tool

The post-processing tool performs the call rewriting, the CFI state computation,
the insertion of the patch values, and the computation of the CFI check values.
It has access to the ARM PA key and consumes the instrumented binary with
zeroed patches and checks. The tool rewrites all direct calls to use the second
function entry point (the first one is used for indirect calls). Next, it computes the
CFI state for every location in the program. Every function is assigned a random
start signature, which is propagated through all PAC-based state updates of the
function. At a control-flow merge, the state values of both branches are known
such that the tool can compute the justifying signature as the XOR-difference
between both states. It finally replaces the patch value #patch with the previously
computed justifying signature. The post-processing tool knows the CFI state at
every location in the program; thus, it can also compute the XOR-differences to
form a valid PAC. For AUTIZA-based check sequences, it replaces #const with
the corresponding XOR-difference. Note that the operating system must set up
the same ARM PA key before starting the instrumented binary.

5.5 Evaluation
In this section, we discuss the security guarantees of FIPAC and analyze different
checking policies. We validate the correctness of our scheme by running the
application-grade SPEC 2017 benchmark and Embench on a functional ARMv8.6-
A model. Finally, we describe our test setup to measure the runtime overhead
for FIPAC and evaluate the overhead of different checking policies.

5.5.1 Security Evaluation
FIPAC considers a software and a fault attacker aiming to hijack control-flow
transfers between basic blocks. To protect these control-flow transfers, FIPAC
performs a state update of the global CFI state S at the beginning of every basic
block allowing FIPAC to detect inter-basic block manipulations triggered by a
software- or a fault-attacker. We provide real-world exploits in Section 5.6 and
show how FIPAC protects the programs from such attacks.

Protection against Software-Based Control-Flow Attacks

A software-based control-flow attacker is able to hijack the control-flow by
modifying indirect calls or returns by exploiting a memory bug. FIPAC mitigates
these hijacks, i.e., ROP or JOP, by ensuring that the executed control-flow
follows the statically derived CFG. When entering a basic block, FIPAC derives
a new state considering the execution history and a unique basic block identifier.
On a control-flow hijack, the attacker redirects the control-flow to a basic block
that is not in the set of valid targets. Hence, the state update derives a faulty
state, which is detectable by the following check. If the attacker omits the update,
e.g., by redirecting the control-flow to the middle of the basic block, the check

5.5. Evaluation 73

before the return instruction detects the wrong state, mitigating ROP attacks.
Suppose the attacker omits the state update, e.g., by redirecting the control-flow
to the middle of the basic block. In that case, the check before the return detects
the wrong state, mitigating ROP attacks.

Compared to other CFI protection schemes, which only consider a fault-based
control-flow attacker, FIPAC uses a keyed state update to prevent a software-
based or combined software- and fault-based control-flow attacker from forging a
valid CFI state. Equation (5.1) depicts the state update function ignoring the
excluded bit 55 for simplification purposes. This function consists of the secret
key KA, the current state S, and a unique identifier SigBB for the basic block.
The secret key KA, inaccessible by the adversary, is initialized at boot time and
ensures that the attacker cannot forge a specific state.

S = Update(S, SigBB , KA)
= S ⊕MACKA

(SigBB)PACSize

(5.1)

Protection against Fault-Based Control-Flow Attacks

While mitigating software-based control-flow attacks only requires protecting
a subset of control-flow transfers, i.e., returns and indirect calls, thwarting a
fault-based control-flow attack necessitates the protection of all control-flow
transfers. Hence, in addition to SCFI schemes, FIPAC also updates the CFI
state for direct calls and branches, detecting any faults on code addresses stored
in the memory, registers, or during the execution.

Detection of a Control-Flow Violation

FIPAC does not prevent a control-flow hijack; instead, it detects an attack, after
the control-flow was violated, at the next check. This is the best that software-
based CFI can do, as they cannot verify branches or calls ahead of executing
them. If an attacker skips the check at the end of the basic block/function, the
hijack is not detected in the first place. However, depending on the checking
policy, a new check occurs at the end of the next basic block or function. Since
the CFI state is invalid at this point, it requires the attacker to skip all subsequent
checks such that the control-flow attack is not detectable. Control-flow attacks,
which redirect the execution to the program’s end, are not detectable, as there is
no check anymore.

CFI State Collision Probability

PACsize is essential for the security of FIPAC. Due to the truncated MAC, state
collisions are possible with a probability of PColl= 1

2P AC_SIZE , which can lead to a
bypass. Figure 5.8 illustrates a control-flow hijack, redirecting the call from B
to C by using a software vulnerability or a fault. When returning to the caller
A, the state mismatch SCexit

̸=SBexit
should be detected by the check of FIPAC.

5.5. Evaluation 74

A

C

Update(SA,C)

ret

ret

Update(S,A) B

Update(SA,B)

S=SA

S=SC

S=SB

call B

S=SCexit

Check(S, SCollision)

S=SBexit

S
C

ol
li
si

on

Figure 5.8: Control-flow hijack from B to C. Due to a state collision, the control-flow
hijack is not detected.

S=SA

S=SB

S=SC

S=SD

S=SFIN

BBA
BBB
BBC
BBD
...

BBFIN
Check

S=SA

S*=SB

S*=SC

S=SD

S=SFIN

S=SFault

BBA
BBB
BBC
BBD
...

BBFIN
Check

BBFault

N
n

Figure 5.9: A coarse-grained check policy. After n updates, a collision rectifies the
faulty state.

However, with probability PColl, a state collision SCexit
=SBexit

=SColl occurs, and
the control-flow attack remains undetected.

Checking Policy

To reliably detect state collisions, the sufficient placement of checks, i.e., the
checking policy, is crucial for the security of FIPAC. However, properly placing
CFI checks is a challenging problem with no general solution. Figure 5.9 shows
the problem of a too coarse-grained checking policy. Left, a valid control-flow
from basic block BBA to BBF IN is shown. Right, the attacker manages to
redirect the control-flow to BBF ault and therefore alter all subsequent states to
S∗.

However, with a probability of PColl, a state collision occurs after each state
update. In this example, after n updates, a collision occurs, and S∗ becomes SD.
Thus, the state S is valid again, and the control-flow hijack cannot be detected
in further CFI checks. To give a quantitative measure of the security of the check
placement, we analyze the probability of undetectable state collisions between
subsequent checks. Equation (5.2) denotes the minimum probability that a state
collision occurs in one of N state updates. As illustrated in Figure 5.10, after the
execution of 50,000 state updates, a state collision probability of 78 % is given.
With the execution of 250,000 state updates, and therefore the same number of
basic blocks, a collision occurs with almost 100 % for a 15-bit PAC.

5.5. Evaluation 75

102 104 106

N

0.0

0.5

1.0

P C
ol

li
si

on

Figure 5.10: Collision probability after N state updates.

MPCollisionN
= 1−

(
1− 1

2P AC_SIZE

)N

(5.2)

Selecting the checking policy is a trade-off between security and performance.
Although a precise policy, i.e., a check at each basic block, maximizes the
detection probability of a control-flow hijack, the performance overhead also
increases. While a loose checking policy, e.g., a check at the program’s end,
might be sufficient for small programs, programs with a high number of executed
basic blocks might be vulnerable. Between these two policies, arbitrary checking
strategies can be selected; for example, a check at the end of each function.
A more advanced check strategy can incorporate additional information, e.g.,
runtime profiling. This allows the compiler to better decide where checks are
needed to enforce a lower bound of the minimum detection probability of CFI
errors.

A check at the end of a function is a good trade-off between runtime overhead
and security. For example, SPEC 2017 consists of 28391 functions. 12583 of
these functions, or 44 %, contain only a single basic block with a check at the
end. Thus, calling such a function is equivalent to performing a CFI state check
at the call site. For example, calling this function within a loop containing no
explicit checks implicitly performs a state validation at each loop iteration.

We analyzed the number of basic blocks per function for SPEC 2017. Fig-
ure 5.11 depicts the occurrence of functions with a certain number of basic blocks.
The number of functions with a small number of basic blocks is much larger
than functions comprising a large number of basic blocks. Almost 75 % of all
functions consist of less than 13 basic blocks, which is in favor of our checking
policy since smaller functions perform a CFI check earlier than large ones. Thus,
the detection probability of a state mismatch is higher. To summarize, we expect
that a CFI check at the end of each function is a good trade-off for a static policy.

5.5.2 Security Comparison
Table 5.1 compares CFI protection schemes addressing software [Aba+05; Eva+15;
Lil+19; Lil+21; Mas+15; Tic+14; ZS13] or fault [HLB19; LHB14; OSM02;
Rei+05; VHM03] adversaries with FIPAC. Software CFI protection schemes, like

5.5. Evaluation 76

0 50 100 150 200

Functions with N basic blocks

0
100

101

102

103

104

#
of

Fu
nc

ti
on

s

Figure 5.11: Number of functions with N basic blocks.

PARTS [Lil+19] or CPI [Eva+15], enforce CFI at a coarse granularity by protect-
ing a wide range of forward- and backward edges on the function level. Although
these approaches mitigate software-based control-flow attacks () exploiting
a memory vulnerability, they fail to protect against a fault-based control-flow
attacks (�). FCFI protection schemes enforce CFI at a finer granularity to
protect the control-flow from fault attacks, i.e., on basic block or instruction
level. In contrast to a software attacker exploiting memory bugs, a precise fault
can tamper with direct and indirect control-flow transfers. While software-based
FCFI protection schemes protect all control-flow transfers from faults (�), they
fail to protect against software-based control-flow attacks (). As the state
update of these schemes is based on counters or predictable IDs, an adversary can
use a memory bug to modify the state and prevent the detection of a control-flow
hijack.

To protect against control-flow attacks from a software- and fault-based
attacks, it is tempting to naïvely combine existing schemes such as PARTS with
FCFI, e.g., CFCSS. While these schemes are secure in their own threat model,
combined software- and fault-based attacks () can bypass them. First, the

Table 5.1: Protection guarantees and vulnerabilities for SCFI and FCFI protection
schemes compared to FIPAC.

SCFI FCFI FIPAC
Prot. Vuln. Prot. Vuln.

Return Addresses � ✔

Indirect Calls � ✔

Indirect Branches � ✔

Direct Calls � � ✔

Direct Branches � � ✔

✔ Full Software � Fault Combined

5.5. Evaluation 77

1 eor x28, x28, #2 ; Instruction sequence
2 eor x28, x28, #3 ; spends CPU cycles to
3 eor x28, x28, #5 ; emulate PA overhead
4 eor x28, x28, Xmod

Listing 5.5: PACIA emulation used for the performance evaluation.

adversary gains control over a register used for the FCFI state update. Then,
it redirects the control-flow to a wrong function, e.g., with a fault. Finally, the
tampered register is used for the state update, thus, can forge a valid CFI state.

To protect against software- and fault-based control-flow attacks and to
support a large-scale deployment, FIPAC fulfills the key requirements stated in
Section 5.2.3. First, FIPAC comprehensively enforces CFI for transfers between
basic blocks. Hence, our scheme operates on a much finer granularity than
typical software CFI protection schemes. Second, FIPAC uses, in comparison to
fault CFI protection schemes, a keyed state update function to mitigate attacks
targeting to manipulate the global CFI state. FIPAC is implemented in software
and is applied automatically during compilation.

5.5.3 Functional Evaluation
To evaluate the functional correctness of FIPAC, we compiled SPEC 2017 [Sta19]
and Embench [Pat+] with our LLVM-based toolchain. We executed these
instrumented binaries on the QEMU 6.0 [QEM20], which we modified to support
ARM PA of ARMv8.6-A. More concretely, to emulate ARMv8.6-A, we modified
the pauth_addpac function with the EnhancedPAC2 feature and return the
XOR-sum of the upper pointer bits with the computed PAC. To emulate FPAC,
we extended the pauth_auth function to terminate on a PAC verification failure.
In QEMU, we started the 5.4.58 Linux kernel and initialized the ARM PA keys
during the boot procedure before starting the benchmarks.

5.5.4 Performance Evaluation
FIPAC exploits Pointer Authentication of ARMv8.6-A. To the best of our knowl-
edge, there is currently no publicly available device supporting ARMv8.6-A with
extended ARM PA. To conduct our performance evaluation on hardware, we
use the Raspberry Pi 4 Model B [Ras20], and run our experiments on the 64-bit
Raspberry Pi OS. Since the ARM Cortex-A72 Central Processing Unit (CPU) is
based on ARMv8-A without ARM PA, we emulate the runtime overhead of the
ARM PA instructions in software by replacing them with their PA-analogue, i.e.,
four consecutive XORs. PARTS [Lil+19] evaluated this sequence to model the
timing of native ARM PA instructions, which is also used in related work [Lil+21].

5.5. Evaluation 78

x2
64

s

im
ag

ick
s

per
lben

ch
s

lbm
s

m
cf

s
nab

s
gcc

s
xz

s
0

50

100

150

200

250

R
un

ti
m

e
O

ve
rh

ea
d

[%
]

37
.8 61

.0 70
.0

0.
4

30
.5

9.
1

60
.2

14
.438

.0 61
.1 83

.2

0.
5

36
.6

10
.3

64
.4

24
.3

10
1.

9 14
5.

9

20
1.

1

1.
6

88
.1

34
.7

16
4.

2

10
1.

8

End
Function End
Basic Block

Figure 5.12: Runtime overhead for SPECspeed 2017.

SPEC 2017

To measure the performance overhead of FIPAC, we compiled all C-based bench-
marks with OpenMP support disabled of SPECspeed 2017 Integer. We enabled
three different checking policies, from coarse-grained to fine-grained checks, to
compare the performance penalty introduced by them. More concretely, we
configured FIPAC to insert a CFI check at the end of the program, at the end of
every function, or at each basic block. Table 5.2 summarizes the code overhead
with different checking policies compared to the baseline with no instrumentation.
As expected, the checking policy with a single check at the end of the program
has the lowest overhead. Verifying the CFI state at the end of every basic block
has the largest geometric mean penalty in code size of 90.6 %, as it requires three
additional instructions per basic block. Interestingly, placing a CFI check at the
end of every function only has a geometric mean overhead of 52.5 %, slightly
higher than a single check at the program end with a geometric mean penalty of
50.6 %. Due to this small increase in code size but its stronger security guarantees,
this policy is a good trade-off.

Figure 5.12 shows the runtime overhead of FIPAC compared to the baseline
without protection. The coarse-grained checking policy with a single check at
the program end introduces the smallest geometric mean runtime overhead of
18.8 %. The fine-grained checking policy with CFI checks at the end of every basic
block has the largest geometric mean runtime penalty of 62.9 %. Interestingly,
the intermediate policy with a check at the end of each function introduces
a geometric mean runtime overhead of 22.1 %. This is only a small increase
compared to a single check at the end, but it provides much better security. Note
that since the control-flow of the lbm_s benchmark is mostly linear and this test
performs a large number of expensive floating point operations, the impact of
FIPAC is rather small. These runtime overheads are outperforming related work
with overheads between 107–426 % [Gol+03].

5.5. Evaluation 79

sg
lib

-co
m

bin
ed

pico
jpeg

wikiso
rt

sta
tem

ate slr
e

ah
a-m

ont64

m
in

ver ed
n

nsic
hneu

crc
32

huffb
en

ch
cu

bic

nett
le-

sh
a2

56 st

nett
le-

ae
s

qrd
uin

o ud

m
atm

ult-
in

t

nbody
0

100

200

300

400

500

600

R
un

ti
m

e
O

ve
rh

ea
d

[%
]

79
.9

60
.1 10

1.
6

32
.3

14
0.

3

14
.1

78
.3

35
.8

16
4.

2

45
.4 87

.6

37
.6

13
.6

22
.5

25
.5

35
.5 50
.2 75

.2

68
.589

.9

67
.8

13
6.

9

39
.3

15
5.

4

14
.1

81
.9

35
.8

16
4.

2

83
.3

87
.4

44
.3

14
.7

22
.4

25
.7

35
.5 50
.9 73

.6

69
.2

25
9.

7

16
5.

6

26
1.

4

10
6.

5

41
2.

7

88
.3

30
1.

0

10
2.

5

66
3.

2

16
7.

4

28
9.

7

89
.5

39
.2

13
1.

9

71
.5 10

7.
5

20
7.

8

38
2.

4

16
1.

5

End
Function End
Basic Block

Figure 5.13: Runtime overhead for Embench.

Embench

To evaluate FIPAC on embedded workloads, we use Embench. The geometric
mean code overheads are between 55–95 %, and the runtime overheads are between
49–168 % (Figure 5.13), depending on the checking policy. This increased overhead
is due to Embench’s small codebase with a larger number of control-flow transfers
compared to application-grade benchmarks like SPEC. In Table 5.3, we show the
detailed code overhead for all benchmarks of Embench for the three checking
policies of FIPAC.

CoreMark

CoreMark [EEM] also represents a widely used embedded benchmark. Instru-
mented with FIPAC, we observed a code overhead of 69.8 % for checking at

Table 5.2: Code size overhead for SPECspeed 2017.

Testcase End Function End Basic Block
[%] [%] [%]

lbm_s 19.19 20.85 33.30
sgcc 74.31 77.62 130.71
xz_s 48.08 50.65 85.78
perlbench_s 66.00 67.22 120.18
nab_s 63.96 65.38 117.15
x264_s 41.56 42.60 73.40
imagick_s 58.44 59.99 101.91
mcf_s 61.29 62.78 115.92

Geomean 50.62 52.51 90.65

5.5. Evaluation 80

program end, 72.7 % for checking at every function end, and 127.1 % for checking
at the end of every basic block. Corresponding to that, we measured runtime
overheads of 76.7 %, 79.6 %, and 274.0 % for the different checking policies. Sim-
ilar to Embench, also CoreMark is dominated by control-flow, and, thus, has
increased runtime overhead compared to SPEC 2017.

Table 5.3: Code size overhead for Embench.

Testcase End Function End Basic Block
[%] [%] [%]

huffbench 70.04 76.03 119.19
slre 81.72 86.37 146.78
cubic 31.43 34.04 56.48
nbody 70.19 77.39 116.09
minver 74.24 80.79 126.64
sglib-combined 81.24 86.47 147.62
st 69.74 76.49 114.74
matmult-int 39.50 43.49 64.18
statemate 61.68 65.08 112.24
crc32 48.16 53.97 76.17
aha-mont64 70.82 77.66 117.22
qrduino 53.38 56.27 99.46
ud 71.66 78.07 119.44
edn 43.78 47.93 71.36
nettle-sha256 46.07 50.65 81.62
wikisort 60.25 64.86 105.86
nettle-aes 19.59 21.46 32.95
picojpeg 50.73 53.49 88.24
nsichneu 54.07 55.27 113.76

Geomean 54.84 59.26 95.08

5.6. Example Exploits 81

5.6 Example Exploits
This section illustrates example control-flow exploits and shows how FIPAC
detects them.

NaCl Sandbox Escape via Rowhammer

In [Goo15], Rowhammer is used to perform a sandbox escape exploit out from
NaCl. The Rowhammer effect is used to manipulate a jump instruction in the
memory to an attacker-controlled destination. In Listing 5.6, the final jump
instruction is faulted for modifying the operands of the instruction. For example,
the jump instruction is modified to use the attacker-controlled register ecx as
the jump target instead of rax.

1 andl $∼31, %eax ; Truncate and align to 32 bits.
2 addq %r15, %rax ; Add %r15, the sandbox base address.
3 jmp *%rax ; Indirect jump.

Listing 5.6: NaCl attack gadget.

After jumping to the attacker-defined code position, FIPAC detects the
control-flow manipulation at the subsequent check instruction. As discussed in
the design of FIPAC, fine-grained checking policies, such as the end of every
basic block or at the end of every function, are supported. When executing such
a check instruction, FIPAC detects the control-flow hijack since the CFI state is
invalid.

RCE on an Electronic Control Unit

In [NT], a combined software- and fault-based control-flow attack was used to
gain Remote Code Execution (RCE) on an automotive Electronic Control Unit
(ECU).

1 ldr r1, [r2, #4]
2 ldr pc, [r2, #4]

Listing 5.7: Instruction corruption to load r2 into pc.

Here, as depicted in Listing 5.7, a targeted fault was used to corrupt a
load instruction to modify the program counter. As register r2 either is directly
attacker controllable or can be modified using a memory vulnerability, the attacker
can redirect the control-flow to an arbitrary code position. While the concrete
attack is not directly applicable to AArch64, as the program counter cannot be
manipulated via a load instruction, [Tim21] highlights alternative methods for
corrupting instructions to redirect the control-flow. Independently of the actual
targeted instruction to corrupt, a fault is used to modify the program counter
in an attacker-controlled way, yielding an arbitrary jump primitive. FIPAC is
able to protect the program from such control-flow hijacks, as the global CFI
state does not match the expected CFI state determined at compile-time for this

5.6. Example Exploits 82

position in the code. Hence, at the next FIPAC check instruction, e.g., at the
end of the function, the attacker redirected the control-flow to, AUTIZA traps,
and FIPAC detects the attack.

Defeating ROP with FIPAC

The idea of ROP [Sha07] is to redirect the control-flow to small code-snippets,
so-called gadgets, with a return at the end. By chaining these gadgets together,
Turing-complete code execution is possible.

1 <libc>:
2 state_patch ; S = StateL
3 ...
4 ... ; gadget_start
5 ...
6 state_patch ; S = StateF XOR PatchL
7 state_check ; S!= StateL
8 ret ; gadget_stop
9 <function>:

10 ...
11 <main>
12 state_update ; S=StateM
13 ...
14 ldr x8, function ; gadget_start
15 state_patch ; S = StateF
16 blr x8 ; indirect call to <function>

Listing 5.8: Detection of ROP attack.

Listing 5.8 depicts a classical ROP exploit and highlights how FIPAC detects
the attack. In this example, the adversary exploits a memory vulnerability in
Line 13 to overwrite an address stored in memory. This address, which is loaded
from memory to the register x8, now points to the start of the ROP gadget in
Line 4 in libc, to which the control-flow is redirected. Depending on the checking
policy, FIPAC automatically inserts a state check instruction before each return.
As the expected state S does not match the actual state, the control-flow hijack
is detected at Line 8.

Attack on CT-RSA of Mbed TLS

In [Car+19], they analyze the fault exploitation against the CT-RSA algorithm
of Mbed TLS [Lin23] cryptographic library. They used a targeted fault-based
control-flow attack on Mbed TLS, with the goal of breaking the RSA signature
algorithm. This attack highlights that attacks on the control-flow can also be
used to attack cryptographic algorithms.

In one of their experiments, they used a fault during a direct call to manipulate
the control-flow to a different function. At the manipulated call target, they
modify the stack, similar to a ROP attack, for their further exploitation. FIPAC

5.7. Data Protection with FIPAC 83

does not prevent the first control-flow manipulation in the first place. Instead,
since the control-flow was manipulated to a different call location, the CFI state
does not match anymore, which is detected by the following state check.

1 <rsa_ossl_mod_exp>:
2 state_patch ; S = StateL
3 ...
4 state_patch
5 bl BN_free
6 ...
7 state_patch
8 state_check
9 ret

10
11 <BN_free>
12 state_update ; S = StateM
13 ...
14 ...
15
16 <BN_clear_free>
17 state_update ; S = StateM
18 ...
19 ...
20 sub sp, r11, #4
21 pop r11, pc
22 ...
23 state_check
24 ...
25 ret

Listing 5.9: Detection of control-flow attack on Mbed TLS.

In Listing 5.9, the function rsa_ossl_mod_exp originally calls BN_free via a
direct call. In Line 5, this call to BN_free is faulted for redirecting the control-
flow to Line 20. Although this redirect is not prevented, the subsequent CFI
check in Line 23 in BN_clear_free detects the control-flow deviation. Thus,
FIPAC prevents any further exploitation of the control-flow attack and aborts
the program.

5.7 Data Protection with FIPAC
Although FIPAC is a CFI protection scheme, it can also be used to protect
certain data of software. In particular, the state-based CFI design allows the
software to inject arbitrary data into it. If the data is known at compile-time, the
post-processing tool can pick that up during the state computation. The state
computation then uses that compile-time known data and performs an update
with that, similar to an ordinary CFI patch operation.

5.8. Discussion 84

1 int cnt;
2 for(cnt = 0; cnt < 10; ++cnt)
3 {
4 // do something
5 }
6 asm volatile("injv %0, #10", : : "r"(cnt));

Listing 5.10: Data injection using injv instruction.

During runtime, the software uses an eor operation to inject or XOR the
register that contains the data to be protected to the CFI state. Only if that
register contains the correct value at that time and program location the CFI state
is updated accordingly and has the expected value. If the data is manipulated,
i.e., due to a fault attack, the state gets updated with the wrong value and
manifests there. Subsequently, the next CFI check detects the state mismatch
as a CFI error and aborts the program. Using this approach, we translate data
errors to CFI errors that are detectable via FIPAC.

To comfortably use this protection mechanism, we extend our compiler with
a custom injv instruction. This new instruction takes the register to inject and
the expected value for that register as two operands. Internally to the compiler,
this instruction is just a pseudo instruction that expands to an eor instruction,
XORing the register from the operand to the global CFI state in register x28.
The expected value is emitted to a metadata section of the ELF file to be used
by the post-processing tool.

In Listing 5.10, we show the usage of this protection mechanism for a C-based
for loop. After the constant amount of ten iterations, the loop counter is injected
into the CFI state. At this program location, the variable has the expected value
of 10, since there are no early exits from the loop. Only if all loop iterations are
completed, and the loop counter cnt has the value 10, the subsequent CFI check
succeeds, e.g., at the end of the function.

While currently, this approach requires a manual adaption of the source code,
this can even be integrated into the compiler in a future work. A compiler
pass can insert the necessary injection operations for all known data or at a
user-defined policy.

5.8 Discussion
This section discusses the hardware requirements of FIPAC, how it can be
implemented on other architectures, and future improvements.

5.8.1 FIPAC Hardware Requirements
FIPAC requires Pointer Authentication from ARMv8.6-A with EnhancedPAC2
and FPAC. At the time of writing, there is no open hardware available imple-
menting ARMv8.6-A yet. Although it is not yet widely available in existing

5.8. Discussion 85

processors, ARM has already announced the successor ARMv9-A [ARMc]. Hence,
we expect new designs, e.g., Apple’s new processors, to feature ARMv8.6-A or
even ARMv9-A.

5.8.2 FIPAC on ARMv8.3-A
FIPAC can also be implemented on ARMv8.3-A with the following adaptions.
ARMv8.3-A ARM PA instructions only compute a new PAC without accumu-
lation, which must be done manually using an additional eor instruction per
state update. This increases the overhead of an update to 3 instructions and
requires one more register. autiza in ARMv8.3-A cannot be used as a check
as it does not trap. However, ARMv8.3-A features blraa, a branch with link
operation with Pointer Authentication, which traps if the jump-target contains
an invalid PAC. This instruction can be misused to perform a CFI check. First,
we transform the known CFI state to a valid PAC with the address of the next
instruction. When executing this branch, it first verifies the target address and,
if valid, jumps to the next instruction. If the PAC, and therefore also the CFI
state, is invalid, the verification traps. Both solutions increase code size and
runtime overheads compared to the prototype of FIPAC based on ARMv8.6-A.

Similar to ARMv8.6-A, there is currently no open hardware available for
ARMv8.3-A yet. Although Apple offers cores, such as the M1 and A14 [App21],
they restrict the usage of this feature. iOS applications are not allowed to load
kernel modules; thus, FIPAC cannot configure the ARM PA keys. FIPAC may
run on the Apple M1 core with ARM PA of ARMv8.3-A. However, we currently
do not have access to such a device, and it requires future research to clarify if
ARM PA key access is possible in the EL1 kernel mode or if Apple restricts it.

5.8.3 FIPAC on Other Architectures
The design of FIPAC is generic and could also be implemented on other archi-
tectures. It is tempting to implement FIPAC on x86 with the AES-NI [Rot12],
supporting partial encryption with one instruction. However, we see limitations
with this approach. First, AES-NI operates on a 128-bit state, also requiring to
embed 128-bit patches. Second, one AES-NI operation only computes one round,
just providing scrambling and no cryptographic strength. Third, it requires the
encryption keys to be held in general-purpose registers. Thus, there is no key
isolation between the user and the kernel. Hence, we do not envision FIPAC to
be implemented with AES-NI.

Recently, the reverse engineering and patching of the microcode of a certain
Intel microarchitecture introduced instruction for Pointer Authentication [Bor+;
Bor23]. While this emulated approach only provides instructions to sign and
verify a pointer, which is similar ARM PA of ARMv8.3, the emulation can be
extended for the updated ARM PA instructions. However, it still needs to be
determined how the signing keys can be isolated by the operating system required
for the security of FIPAC. If this challenge can be solved, FIPAC can be fully
implemented on existing x86 CPUs.

5.8. Discussion 86

5.8.4 Dynamic Key Handling
FIPAC uses a static ARM PA key configured by the OS. However, ARM Pointer
Authentication supports up to five keys for different domains. By using different
keys, FIPAC could isolate the control-flow of the kernel and user programs.
Future work can extend the instrumentation to support all available encryption
keys to also provide CFI isolation. For better isolation between applications,
FIPAC could embed the ARM PA key in the binary, allowing applications to
use different keys. Existing key exchange algorithms are then used to protect
the embedded ARM PA key. The OS has access to a private key for the key
exchange, can read the ARM PA key, and configure the system before starting
the binary. The previous approaches use a static key per binary, such that all
executions use the same ARM PA key. To dynamically change the ARM PA key,
the post-processing can be integrated into the OS. Before starting the application,
the OS chooses a random key and performs the post-processing step, i.e., the
computation of the CFI states, patches, and check values. Thus, every invocation
of the application is different in terms of FIPAC-related patch and check values,
which also hardens the attack surface.

We tackle this challenge and enhance FIPAC with this approach with SFP,
which is discussed in Chapter 6. Furthermore, we use FIPAC to extend the scope
of protection and secure the system call flow.

5.8.5 Instruction Granular Protection
FIPAC does not protect the linear instruction sequence within a basic block, as
it only performs state updates at the beginning of a basic block. If more fine
granular protection is required, i.e., intra-basic block security, FIPAC supports
the placement of state updates within security-critical basic blocks. For such
pieces of code, the state update from Listing 5.1 is placed after every instruction to
emulate instruction-granular CFI. Instruction granular CFI increases the overhead
and adds two additional instructions per instruction to protect. Automatically
identifying such critical pieces of code is a challenging task and not in the scope
of this work. Instead, it requires the developer to manually place a check, e.g.,
via inline assembly. In the future, a compiler could insert the necessary state
updates automatically for annotated scopes that require further protection.

5.8.6 Compatibility
FIPAC uses the instruction address to compute a unique CFI state update for
every basic block. To compute the justifying signatures and the values needed
for the CFI checks, these addresses need to be known at compile-time. However,
when Address Space Layout Randomization (ASLR) is enabled, the code address
space is randomized, which leads to randomized signatures not being compatible
with the static computation. This problem can be solved by using static numbers
to compute the signatures or by integrating dynamic key handling in the OS,
which we integrate in Chapter 6.

5.9. Conclusion 87

FIPAC is a software-based CFI protection scheme that comes with certain
degrees of flexibility compared to hardware-centric approaches. As FIPAC
supports arbitrary checking policies on the same system, critical applications,
e.g., running within a Trusted Execution Environment (TEE) or an enclave,
can have a stronger checking policy than a non-critical application. FIPAC
can also be deployed partly within an application, e.g., the protection schemes
is only deployed on security-critical functions or code. Furthermore, FIPAC
is backward compatible and fully supports non-instrumented applications that
execute alongside the ones with protection.

5.9 Conclusion
With the rise of new attack methodologies, fault and software attacks are om-
nipresent on all commodity devices and require protection. While there exist
different defenses, they are not sufficient when considering both fault and software
attacks

We presented FIPAC, a fine-granular software-based CFI protection scheme
for upcoming ARM-based hardware. FIPAC offers fine granular control-flow
protection on basic block level for both software- and fault-based control-flow
attacks. The design exploits a cryptographically secure state update function,
which cannot be recomputed without knowing a secret key. FIPAC utilizes ARM
Pointer Authentication of ARMv8.6-A to efficiently implement the keyed CFI
state update and checking mechanism. We provide a toolchain to automati-
cally instrument and protect applications. The evaluation of FIPAC with the
SPEC 2017 benchmark with different security policies shows a geometric mean
runtime overhead between 19–63 % and is slightly larger for small embedded
benchmarks. FIPAC is a software-based CFI protection scheme that requires no
hardware changes and outperforms related work.

Having a cryptographic state available within the software turns out to be
versatile protection primitive. While FIPAC uses this approach to primarily
implement CFI, this mechanism can also be used to protect other assets. As
discussed in Section 5.7, the cryptographic state can be used to protect arbitrary
compile-time known data. However, this approach can also be used to provide fine-
granular software licensing. This would allow a system to only call special library
functions if a paid key is loaded at the right time. If there is no software license
available, calling a paid library function will yield a control-flow error and stops
the program. Such a mechanism could be used for virtual Programmable Logic
Controllers (PLCs) in the cloud [Sof23] that are used for industrial environments.

Nevertheless, FIPAC still has limitations, i.e., missing a dynamic key handling.
In the next chapter, we extend FIPAC, solve the aforementioned limitation, and
expand the scope of protection for system calls.

6
System Call Flow Protection and

Dynamic CFI

In the previous chapter, we introduced FIPAC, a new countermeasure that
protects the control-flow of user-space applications against software- and fault-
based control-flow attacks. While FIPAC increases the security against control-
flow fault attacks in the user-space, it misses one critical part. As FIPAC is
designed to operate on application-class processors, the system usually hosts a
feature-rich operating system that manages the resources. While the control-flow
of Control-Flow Integrity (CFI) instrumented programs is protected, the interface
to the kernel, i.e., the system call or syscall interface, remains unprotected
and vulnerable against faults. A control-flow hijack, independent of how it is
performed (cf. Section 3.1), can skip a syscall call or can even change which
system call gets executed. Both cases may have a critical security impact on the
system. Furthermore, precise faults can directly manipulate which system call
gets executed by manipulating the system call register containing the system call
number.

While traditionally, CFI was only used to protect user-space applications,
different CFI protection schemes can also protect the kernel [CDA14; Ge+16].
However, currently, there are no CFI protection schemes available providing
protection between different security domains, i.e., the transitions between the
user-space program and the kernel. Thus, the large attack surface, the transitions
between user programs to the kernel still remain unprotected against fault attacks,
even if CFI is deployed in the user-space and/or in the kernel. Hence, there is a
need for new countermeasures that protect the software interface to the kernel
and provides system call flow integrity for commodity devices.

88

89

Contribution
In this chapter, we solve the problem of the unprotected system call interface
and provide system call flow protection on top of CFI, protecting the interface
to the kernel against both software and fault attacks. SFP cryptographically
links the system call itself and its origin to a global CFI state that is verified at
runtime in the operating system. We built SFP on top of FIPAC, but in general,
this protection mechanism is designed to be generic and compatible with other
CFI protection schemes. A second-stage linking mechanism within the kernel
dynamically applies a second link to ensure that the correct system call was
selected and executed.

To automatically protect arbitrary programs, we develop an LLVM-based
toolchain to provide CFI and instrument all system calls. We provide an instru-
mented standard library, where all system calls are instrumented with our system
call protection. Furthermore, we modify the Linux kernel to dynamically verify
at runtime that the correct system call was executed.

We implement SFP on top of FIPAC, the software-based CFI protection
scheme from Chapter 5. To increase CFI protection of subsequent runs of a
program, we extend FIPAC to randomize the CFI protection at every start of
the program. We evaluate the performance of SFP based on a microbenchmark
to measure the impact of SFP on the system call latency, leading to an over-
head of 1.9 %. To show the applicability to real-world programs, we perform
macrobenchmarks using the SPEC 2017 application benchmark. On average, we
measure a runtime overhead of 20.6 % for protected applications. Summarized,
we make the following contributions:

• We provide system call flow protection by linking the syscall and its origin
to a global CFI state and verifying it at runtime.

• We perform dynamic instrumentation of user programs to yield different
CFI signatures for subsequent program calls and provide a new CFI checking
policy.

• We provide a prototype implementation comprising an LLVM-based toolchain,
an instrumented C-standard library, and a modified Linux kernel.

• We evaluate the performance based on a microbenchmark and on the
application-grade SPEC 2017 benchmark.

6.1. Background 90

Scientific Contribution

Chapter 6 is primarily based on the following publication that was pre-
sented at HASP 2022 in Chicago (Illinois, USA).

Robert Schilling, Pascal Nasahl, Martin Unterguggenberger, and Stefan
Mangard. “SFP: Providing System Call Flow Protection against Software
and Fault Attacks.” In: CoRR abs/2301.02915 (2023). doi: 10.48550/
arXiv.2301.02915

I am the main author of this paper and developed the technical idea. I
wrote the majority of the text, developed the prototype, and performed all
the experiments. Pascal Nasahl contributed to the background section of
the text. Martin Unterguggenberger helped in editing the Tikz drawings.
Stefan Mangard supported the project in many discussions.

Outline
The remainder of this chapter is structured as follows. Section 6.1 introduces the
Linux system call interface and existing countermeasures to protect it. Section 6.2
specifies the threat model for this work and shows how existing attacks can bypass
it. Section 6.3 presents the design SFP, and Section 6.4 details the prototype
implementation. Section 6.5 provides the security and performance evaluation.
Section 6.6 discusses possible prototype improvements, Section 6.7 presents
related work, and finally, Section 6.8 concludes this chapter.

6.1 Background
This section provides background to the Linux system call interface and discusses
existing countermeasures to provide system call flow protection. Existing pro-
tection schemes in the context of CFI are already discussed in Section 3.2 or in
Chapter 5.

6.1.1 Linux and the System Call Interface
Linux [Tor22] is a monolithic kernel used in billions of devices [Var22] and
embedded systems. To retrieve a particular service or get a specific resource, e.g.,
reading and writing a file, or to get dynamic memory, the user program needs to
request this from the kernel, i.e., via a system call. A system call changes the
privilege and transfers the execution from the user-space program to the kernel of
the operating system, which then grants or denies the requested service. A user-
space program aiming to execute a certain system call invokes the corresponding
system call wrapper routine provided by a library. This wrapper then initiates
a control-flow and privilege transfer into the kernel-space by using a dedicated
instruction, i.e., the svc instruction for AArch64. The system call instruction

https://doi.org/10.48550/arXiv.2301.02915
https://doi.org/10.48550/arXiv.2301.02915

6.2. Threat Model and Attack Scenario 91

User mode

Application

...

write()
...

libc syscall wrapper

write() {
...

svc
...

}

Kernel mode

Syscall handler

syscall_write:
...

sys_write()
...

sys_exit

Syscall service routine

sys_write() {

...

}

Figure 6.1: Linux system call invocation.

requires the system call number of the requested service and additional optional
parameters as arguments.

Figure 6.1 illustrates the system call interface [Ker22b] of the Linux kernel.
A user-space program aiming to execute a certain system call invokes the corre-
sponding system call wrapper routine provided by a library. This wrapper then
initiates a control-flow and privilege transfer into the kernel-space by using a
dedicated instruction, i.e., the svc instruction for AArch64. The system call in-
struction requires the system call number of the requested service and additional
optional parameters as arguments.

6.2 Threat Model and Attack Scenario
Our threat model considers a powerful adversary capable of performing software
attacks, fault-based attacks, or combined software- and fault-based attacks. This
attacker can exploit memory vulnerabilities to arbitrarily read or modify data in
memory. However, we assume that a software adversary cannot modify the code
segment of the program via a memory vulnerability, as the operating system
maps that segment as read-only, and we do not consider Just-in-Time (JIT)
compiler environments. In addition, by inducing faults, the attacker can flip
bits in memory, the registers, the code segment, or the instruction pipeline of
the processor. We assume that the control-flow of executed programs and the
kernel is protected using a Software-Fault CFI (SFCFI) protection scheme, such
as FIPAC.

Note that faults in the data, except the system call register, are out of the
scope of this work. It requires orthogonal schemes, e.g., redundancy encoding
schemes for data [Bro60], for their protection. We assume the PACIA instruction
of ARM Pointer Authentication (ARM PA) to be cryptographically secure, and
the attacker does not have access to the encryption keys. Furthermore, the
operating system is assumed to be secure, providing isolation of the kernel task
structure to the user program.

6.2.1 Attack Scenario
Within this threat model, the adversary aims to hijack the program’s interface to
the Linux kernel. In the example shown in Figure 6.2, the user program invokes

6.2. Threat Model and Attack Scenario 92

User mode

Application

...

syscall_C()
...

libc syscall wrapper

syscall_C() {
...

syscall args
syscall numb

svc
...

}

Kernel mode

Syscall handler

syscall_C service routine

...

syscall_B service routine

...

sys_exit

E

Figure 6.2: Redirecting a system call using fault attacks.

1 basic_block:
2 ...
3 ldr w8, memAddress ; load data from memAddress to w8
4 ...
5 mov x0, #... ; arguments for C system call
6 mov w8, #syscall_C ; system call number for C
7 svc #0

Listing 6.1: Invoking system call C on AArch64.

the system call C using the Linux system call interface. However, by using a
fault-based attack or a combined software- and fault-based attack, the adversary
can either (i) redirect the system call to B or (ii) entirely skip the system call.

Listing 6.1 shows the instruction sequence to invoke the system call C on
AArch64. The system call number is stored in register w8, and the system call
arguments are stored in the remaining registers. By flipping bits in register w8
using faults, the adversary can redirect (i) the execution to a different system
call.

Moreover, the system call gadget in Listing 6.1 is susceptible to combined
software- and fault-based attacks. A combined software- and fault-based at-
tacker utilizes a memory vulnerability to overwrite data in memory at address
memAddress. Afterward, in Line 4, the adversary hijacks the execution of the
program by flipping bits in the program counter to redirect the control-flow
to the svc instruction in Line 7, responsible for switching to the kernel. This
attack enables the adversary to invoke arbitrary system calls. In addition to
these attacks, a fault attacker can also corrupt the svc instruction to skip (ii)
the execution of the entire system call.

SFCFI protection schemes, such as FIPAC from Chapter 8, currently cannot
mitigate these attacks as these countermeasures do not consider transitions
between user-space and kernel-space in their threat model. Since our protection
scheme only instruments the user-space application, it does not protect the
interface to the kernel, which poses a large threat surface for critical vulnerabilities.
Even if CFI is deployed independently in the user- and kernel-space, the transitions
between those domains still remain vulnerable to fault attacks.

6.3. Design of SFP 93

Furthermore, current SFCFI protection schemes use static control-flow instru-
mentation, which is the same for subsequent calls to the program. As a result, an
attacker with access to the code segment or general-purpose registers can learn
from previous program executions. Thus, it would be possible for an attacker to
attempt multiple control-flow attacks until the hijack succeeds.

6.2.2 FIPAC Intra-Basic Block Protection
In Section 5.8.5, we describe a mechanism to extend the protection guarantees
of FIPAC from inter to intra-basic block security. By applying a state update
after every instruction within a basic block, we subsequently also update the CFI
state continuously. Although this mechanism can be applied around syscalls, it
does not add any protection for them. With a state update before and after the
system call, an attacker can still fault the syscall number or manipulate the svc
instruction to perform a nop instruction. Although this attack manipulates the
execution of the system call, FIPAC’s extended intra-basic protection does not
detect these attacks. Consequently, it requires a different protection scheme to
provide call flow protection for system calls.

6.3 Design of SFP
In this section, we present SFP, a mechanism that provides system call flow
protection by exploiting a stateful CFI protection scheme. While SFP is generic
and compatible with different CFI protection schemes, our design builds on FIPAC
as the underlying CFI protection scheme. FIPAC is presented in Chapter 5,
and the details of ARM Pointer Authentication (ARM PA) are discussed in
Section 5.1. Section 6.6.3 further discusses the compatibility aspects and how
SFP can be applied to different CFI protection schemes.

6.3.1 Requirements for System Call Protection
The goal of SFP is to protect the system call interface to the kernel against
software-based, fault-based, and combined software- and fault-based attacks.
Based on the attack scenario from Section 6.2, the protection of SFP must fulfill
the following requirements.

R1 System Call Number . Prevent an attacker from manipulating the system
call number to a different system call.

R2 System Call Execution. Ensure that a syscall cannot be skipped.

R3 System Call Protection. Ensure the system call dispatcher in the kernel
executes the correct system call function.

R4 Dynamic CFI Instrumentation. Provide a dynamic CFI instrumentation to
ensure protection between consecutive program executions.

6.3. Design of SFP 94

6.3.2 System Call Protection
To fulfill requirements R1 to R3, SFP introduces a two-step approach to crypto-
graphically linking the syscall to the state of the deployed SFCFI scheme. First,
at the system call caller site, we cryptographically link the system call origin and
which system call we want to execute to the cryptographic CFI state. Second, at
runtime, we perform a second-stage linking operation during the system call op-
eration, confirming that the correct syscall gets executed. Furthermore, we break
up the toolchain of existing CFI toolchains and shift the CFI instrumentation
into the kernel to allow a dynamic computation per program call.

First-Stage System Call Linking

We statically identify at compile-time which system call is getting executed for
all locations in the program. To protect the system call, SFP binds the syscall
to the CFI state, e.g., by performing a CFI state update with the system call
number. The system call number is a monotonically increasing number, thus
not providing a significant Hamming distance between different system calls. A
single bit-flip on the system call number changes the system call to a different
one. For example, the write and read system call on AArch64 only differ in two
bits. As a result, the system call number cannot safely be used to bind it to the
CFI state since faults can easily manipulate the system call to a different one.

To overcome this limitation and perform a safe and secure state update,
we need to compute a syscall-dependent update value with a sufficiently large
Hamming distance. In SFP, we exploit the cryptographic properties of the
PACIA instruction of ARM PA fur this purpose. We use the computation of
a PACIA operation, with the system call and a randomly selected modifier at
instrumentation-time as input, and compute a cryptographic 15-bit patch value for
the particular system call, which is stored in the binary. Due to the cryptographic
Message Authentication Code (MAC) operations of the ARM PA, the patch values
of different syscalls have a large Hamming distance and cannot be computed
without having access to the secret ARM PA key. The computation of those patch
values occurs at instrumentation-time, which can happen during the compilation
or loading of the program through the Operating System (OS), and replaces the
empty patch values in the binary.

Before executing a system call and jumping to the kernel, we patch the
CFI state with the aforementioned statically computed system call patch, thus
performing the first-stage linking. At this point in time, we bind the future
execution of the particular system call to the CFI state ahead of executing it.
Moreover, executing the correct system call in the kernel is required to properly
unlink the patch to retrieve the correct CFI state gain. Only when executing
the correct system call in the kernel the CFI state gets properly unlinked to
retrieve the correct CFI state gain. Performing first-stage linking already provides
protection for requirements R1 and partly R2.

6.3. Design of SFP 95

Second-Stage System Call Linking

After linking the system call to the CFI state in the user-space of the program,
the system call is executed, and the execution switches into the kernel. Via
dispatching code and the selected system call in the general-purpose register
w8, the kernel selects the correct system call function and executes it. At the
beginning of every particular system call function, we verify if the CFI state
matches the value for the executed system call function. At the end of each
system call function, we apply a second patch, i.e., the second-stage linking to the
CFI state, confirming that the previously selected system call was really executed.
This patch value is computed dynamically during the execution of the syscall with
the help of PACIA, the system call number, and a modifier value, which is different
than the modifier from the first-stage linking. By using a different modifier and
computing a different patch value, we avoid canceling out the impact on the CFI
state when applying it to it. Immediately after applying the computed patch
value to the CFI state, we perform a check operation to ensure a valid CFI state.
The second-stage linking step ensures that both requirements R2 and R3 are
fulfilled.

In Figure 6.3, we summarize SFP’s system call protection. A user program
performs the first-stage linking and patches the CFI state with a statically
computed syscall patch to link the execution of a system call. The execution
transitions to the kernel, which executes the desired system call function. At the
end of the system call, the kernel performs the second-stage linking operation,
followed by a CFI check operation. The second-stage linking operation only
succeeds when the correct system call is linked to the CFI state. As a result,
SFP’s approach translates system call errors, independent of how they occur, to
CFI state errors, which eventually are detected through the checking policy of
the selected CFI protection scheme. Note that Figure 6.3 includes CFI checks
at the beginning and end of the syscall to immediately detect a wrong syscall
when entering the kernel and after the syscall’s execution. Consequently, we
reduce the detection latency, and no harmful syscall can be performed. The
user-space application then continues the execution with the CFI state at the
end of the executed syscall. The CFI state in the user-space is only correct if the
kernel executes the right syscall; thus, the backward edge from the kernel to the
user-space is protected.

6.3.3 Dynamic Instrumentation
Existing SFCFI protection schemes such as FIPAC or related work [Cle+17;
NSM21; Wer+18] use a static post-processing or encryption phase. A dedicated
post-processing tool recovers the control-flow, computes the patch and check
values, and modifies the program. The static approach with a single encryption
key leads to the fact that all executions of the same program use the same CFI
values, e.g., patches, updates, or checks. By observing the used CFI-related
values, attackers can more easily craft valid CFI states to bypass the control-flow
protection.

6.3. Design of SFP 96

Check(S, SB)
...

Compute SigB2

Patch(S, SigB2)
Check(S, SB2)
Syscall Exit

Check(S, SC)
...

Compute SigC2

Patch(S, SigC2)
Check(S, SC2)
Syscall Exit

Update(S, A)

A
Patch(S, SigC1)

Syscall C

...
U

se
r-

Sp
ac

e
A

pp
lic

at
io

n

K
er

ne
l

Syscall B

Syscall CE

✗

✓

Figure 6.3: System Call protection in SFP. Before a syscall, we cryptographically
bind the syscall to the CFI state for later verification and second-stage
linking in the kernel.

In SFP, we overcome this limitation by splitting up the toolchain and integrat-
ing the CFI instrumentation into the kernel. Instead of statically performing the
post-processing step at compile-time, we integrate the post-processing tool into
the operating system. When starting a program, the Executable and Linkable
Format (ELF) loader of the OS identifies a CFI-instrumented program. It gener-
ates a random ARM PA encryption key and stores it in the process task structure.
The ELF loader then performs the per-program call unique CFI instrumentation
and computes the expected CFI state and all patch values needed to handle the
control-flow. The CFI states are stored along with the process task structure
within the kernel. With this mechanism, subsequent calls to the same program
create different encryption keys. As a result, it guarantees that different CFI
values are generated on each new program start, i.e., fulfilling requirement R4.

Kernel Checking Policy

The instrumented programs of SFP do not contain any CFI check operations.
Instead, in SFP, we develop a novel CFI checking policy at the edge of the
operating system. Due to dynamically instrumenting the program when starting
it, the operating system knows exactly the expected CFI state for every location
of the program. When a user program now enters the kernel, e.g., due to a
system call instruction, the kernel, which has access to both the user program
state and the expected CFI states, can verify them. If the current CFI state
matches the expected state, the system call continues. However, if the CFI state
deviates from the expected state, a CFI error is detected, and the operating
system aborts the program execution. A CFI check at the of the syscall confirms
the execution of the right syscall. Apart from system calls, a user program can

6.4. Implementation 97

enter the operating system also via different execution paths. We include the
same checking policy when a timer interrupt is raised and the kernel is entered.

6.4 Implementation
The prototype implementation of SFP consists of two parts. First, we develop a
toolchain to automatically compile and instrument arbitrary C-programs with
CFI, including a custom runtime library. Second, we modify the kernel of the
Linux operating system to include the system call verification, the new checking
policy, and the dynamic instrumentation on the program start.

6.4.1 Toolchain
This section describes our toolchain capable of compiling arbitrary C programs
with SFP.

Compiler

We base the toolchain on the modified compiler of FIPAC [SNM22a], which is
based on the LLVM [LA04] compiler framework. We adopt the AArch64 backend
of the compiler to instrument the control-flow and embed control-flow meta
information in a custom section of the ELF binary. The compiler inserts the
updates for every basic block, inserts patches for control-flow merges, and also
deals with call instructions. Our modified compiler emits a running ELF binary
but leaves all patch values for control-flow merges, and system calls to be zero.
The necessary post-processing step is shifted to the operating system, which
computes all patches at the program start. Note that the instrumented program
does not contain any check instructions, as they are part of the transition to the
operating system and are performed in the kernel.

C Standard Library

System calls are typically invoked via wrapper functions provided by the standard
library of the programming language. This prototype toolchain uses a CFI-
instrumented version of the musl [Fel22] C standard library. The standard
library provides wrapper functions for all system calls or uses system calls
directly in different library functions. We identify every system call in the
musl standard library and insert the necessary patch sequence containing an
immediate load and the XOR-based state update ahead of executing the system
call. Listing 6.2 summarizes the first-stage linking, where the immediate value
for the mov instruction is zero. When starting the binary, the operating system
computes the actual patch value for this system call and fills out the correct load
value.

6.4. Implementation 98

1 basic_block:
2 ...
3 mov x0, #... ; arguments for B system call
4 mov x15, #0 ; Zero system call patch
5 eor x28, x28, x15 ; Perform a CFI state update
6 mov w8, #syscall_B ; system call number for B
7 svc #0 ; Jump to kernel

Listing 6.2: Patched system call in the musl standard library.

6.4.2 Kernel Support
SFP requires minor modifications to the operating system. We base the prototype
of SFP on the Linux kernel in version 5.15.32 [Ker22a].

Dynamic Instrumentation on Program Start

On program start, when an instrumented ELF binary is started, SFP performs
the per-program instrumentation of the program. First, the kernel generates a
random encryption key used for the ARM PA instrumentation. With the help of
control-flow metadata, which is stored along with the ELF binary in a metadata
section, we compute the CFI state throughout the program and fill the necessary
patch values for justifying signatures. Furthermore, we compute the syscall- and
key-dependent patch values that are used to protect the system call interface.
For every system call in the program, we compute its Pointer Authentication
Code (PAC) based on the system call number and user-space program unique
modifier. The resulting PAC value, which is not guessable by the attacker, is
filling out the immediate patch value before the syscall.

As discussed, the instrumented program does not contain dedicated CFI check
operations, as they are performed when entering the kernel. Instead, we store
the expected CFI state for each program location in the task’s kernel structure.
To reduce the storage overhead, we use a RangeMap, to only have one entry for a
contiguous range of states, where it does not change.

System Call Verification

During the system call, the user program updates the CFI state with a statically
computed cryptographic patch value that depends on the system call number.
The verification that the correct system call gets executed happens in the kernel.
After the system call jumps into the kernel, a dispatcher code selects the correct
system call function to be executed. At the end of every system call function in the
kernel, we perform the second-stage linking. Based on the system call number, we
dynamically compute a second patch value dependent on the currently executed
system call. In Listing 6.3, we summarize this operation sequence, where we
perform the second-stage linking within the kernel. To retrieve a cryptographically
secure patch value, we exploit the PACIA instruction of ARM PA, which takes the

6.5. Evaluation 99

1 syscall_A:
2 ...
3 mov x16, #1 ; Load kernel modifier
4 pacia x8, x16 ; Compute system call patch
5 eor x28, x28, x15 ; Perform 2nd stage linking
6 and x28, x28, #0xffffffff00000000 ; Clear syscall
7 ret ; number from CFI state

Listing 6.3: Dynamically computing the system call patch and removing it from the
CFI state at the system call end.

system call and a modifier as input operands. Note that the modifier used for the
kernel update of the CFI state is different from the one used for the first-stage
linking in the user program. This property is essential to avoid attackers being
able to skip system calls entirely since patching the CFI state twice with the
same value would cancel out and has no permanent effect on the CFI state. We
finally apply the computed patch to the CFI state and clear the lower bits from
the system call.

Checking Policy at the Kernel Boundary

Whenever a user program enters the kernel, SFP performs a CFI check to validate
if the current CFI state still matches the expected state. We perform CFI checks
on two entering points: During a system call and when a timer interrupt is raised.
With the help of the CFI states stored in a RangeMap within the process structure
and the knowledge of the program’s current program counter, we look up the
expected CFI state for the program location. If the current CFI state, stored
in the register x28 of the user program state, diverges from the expected state,
a CFI error is raised, and SFP stops the program execution. For syscalls, we
perform a second CFI check at the end of the syscall function in the kernel to
ensure the syscall was really executed.

6.5 Evaluation
In this section, we first evaluate the security of SFP and show how it provides
protection and the defined threat model. Second, we evaluate the functionality
and the performance overhead of the prototype implementation.

6.5.1 Security Evaluation
We analyze the security guarantees of SFP and show how different attacks within
the threat model are mitigated.

6.5. Evaluation 100

Control-Flow Hijacks in the User-Space or Kernel

SFP provides CFI protection for the user-space application based on the selected
underlying CFI protection scheme. The prototype uses FIPAC, a basic block
granular CFI scheme, protecting all direct/indirect branches as well as direc-
t/indirect calls. The protection domain includes the C standard library, which is
fully CFI instrumented. Consequently, an attacker cannot redirect syscalls in
the user-space application by redirecting the control-flow to a different wrapper
function of the standard library. Control-flow attacks in the kernel are detected
via the kernel’s internal CFI protection scheme.

Skipping a System Call

When skipping a system call instruction, i.e., the svc instruction, the first-stage
linking already occurred. Subsequently, the skipped system call misses the second-
stage linking from the kernel, which yields a wrong CFI state, which is detectable
through the CFI checking policy.

However, if the entire system call instruction sequence is skipped, i.e., first-
stage patching and the syscall instruction are omitted, the hijack is still detectable.
As both patch operations are missing on the CFI state, the state is wrong again,
and a subsequent CFI check, e.g., when the program gets scheduled, detects the
invalid state. In both cases, SFP transforms the skipped system call into a CFI
error, which manifests itself in a wrong CFI state, which is detectable.

Changing a System Call

A fault on the register containing the system call number, or a combined software-
and fault-based attack, in which the attacker controls the register used to execute
the system call, redirects the system call to a different one. SFP protects against
both attacks. By applying the first-stage linking to the CFI state, the correct
system call is already bound to its future execution. Manipulating the system
call register, e.g., due to a fault or software vulnerability, leads to applying the
wrong system call patch to the CFI state. When the system call is executed, the
CFI state for that program differs from the expected state, and the CFI check in
the kernel detects the problem and aborts the program.

To bypass a system call, the attacker only has a single chance to change the
system call number and manipulate the previous system call patch to the correct
one for this location. However, the system call patch is protected via the secret
ARM PA key, which the attacker cannot access. Guessing the PAC leads to a
probability of p = 1

215 = 0.0031 % for getting the correct patch value, where 15
is the configured PAC size of our prototype implementation. Furthermore, due
to the dynamic instrumentation on the program startup, the system call patches
always differ between subsequent calls of the same program. As a result, the
attacker cannot learn new patch information between subsequent program calls.

6.5. Evaluation 101

6.5.2 Functional Evaluation
To validate the functional correctness of SFP, we emulate the execution on
the functional simulator QEMU [QEM20] in version 7.0.0. Since this simulator
currently only supports ARM PA from ARMv8.3-A, we extend it to include ARM
PA of ARMv8.6-A to support the CFI protection. The functional evaluation
runs the modified Linux kernel from the prototype and can start and execute
instrumented programs where all system calls are protected. Within the kernel,
the functional simulator performs the second-stage linking and a CFI check to
verify the execution of the correct syscall.

Fault Simulation

To verify the functionality of the countermeasure, we emulated skipping a system
call and modifying the system call number. In both cases, SFP detects the
attack through the next CFI when entering the kernel. Due to the manipulation,
the CFI state became invalid, and the CFI checking policy stops the program
execution.

6.5.3 Performance Evaluation
At the time of evaluation, there is no publicly available system supporting
ARMv8.6-A needed to run FIPAC. However, to conduct the performance evalua-
tion and to measure the performance impact of SFP, we emulate the runtime
overhead of ARM PA instructions. Therefore, we base the performance evalu-
ation on a Raspberry Pi 4 Model B [Ras20] with 8 GB RAM configured with
a fixed Central Processing Unit (CPU) frequency of 1.5 GHz. The Raspberry
Pi contains an ARM Cortex-A72 CPU based on ARMv8-A but without Pointer
Authentication. To emulate the overhead of ARM PA instructions, we replace
them with a PA-analogue instruction sequence, i.e., four consecutive XORs.
Related work [Lil+19; Lil+21] evaluated this instruction sequence to mimic the
timing behavior of an ARM PA instruction.

Microbenchmark

To evaluate the overhead of SFP executing system calls, we perform a simple
microbenchmark. Our benchmark measures the syscall latency of the getpid
system call, which is a side-effect-free syscall and is used in related works to
benchmark the syscall execution path [Bue19; Can+21]. We execute the system
call 10 million times and measure the system call latency via the processor’s inbuilt
cycle counter. Figure 6.4 summarizes our evaluation results, showing the syscall
latency in different kernel configurations. On the plain, unmodified Linux kernel,
we measure an average system call latency of 2131 cycles. When integrating the
system call verification alone, the latency rises to 2144 cycles. Furthermore, with
the CFI checks alone enabled, the latency increases to 2175 cycles. When both
are active, we measure a system call latency of only 2185 cycles, impacting the
system call latency by only 1.9 %.

6.5. Evaluation 102

Plai
n

Sy
sca

ll Chec
k

CFI Chec
k

Sy
sca

ll + CFI Chec
k

2000

2050

2100

2150

2200

La
te

nc
y

[c
yc

le
s]

2131.27 2144.28
2175.62 2185.92

Syscall Latency for getppid

Figure 6.4: The microbenchmark shows the system call latency of the getpid system
call for different kernel configurations. SFP increases the system call
latency by 1.9 %.

Macrobenchmark

To demonstrate the applicability of SFP on a larger scale, we perform a mac-
robenchmark on real-world applications. We compiled the SPECspeed 2017 [Sta19]
benchmark with our toolchain, including only C-based programs. In Figure 6.5,
we plot the runtime overheads in two different configurations compared to the
plain uninstrumented code. First, we only include the dynamic verification, in-
cluding the new CFI checking policy, that verifies the CFI state of user programs
when entering the kernel. Second, we include the syscall protection based on the
two-stage linking approach together with the previously evaluated CFI checking
policy.

During the evaluation, we measure a geometric mean overhead of 18.8 % for
the new CFI checking policy and 20.6 % with the system call protection and CFI
checking policy in place. Based on the evaluation of the SPEC 2017 benchmark,
we only measure a difference in the overhead of 1.8 % between the pure CFI
protection and the full system call protection of SFP. This result shows that the
dominating part of the overhead comes from the CFI instrumentation, not from
the system call protection. Thus, reducing the overheads of the CFI protection
directly influences the performance of SFP.

6.6. Discussion 103

lbm gcc

per
lben

ch xz
x2

64 m
cf

im
ag

ick nab
0

50

100

150
R

un
ti

m
e

O
ve

rh
ea

d
[%

]

0.
4

60
.2 70

.0

14
.4 37

.8

30
.5

61
.0

9.
1

0.
5

61
.8 70

.9

17
.2 38

.8

32
.4

61
.8

11
.2

Basic CFI
SFP

Figure 6.5: Macrobenchmark shows the performance impact of SFP on the SPEC 2017
benchmark. We evaluate the impact of CFI only and SFP, including the
system call protection.

6.6 Discussion
This section discusses prototype limitations and shows how SFP is compatible
with other CFI protection schemes.

6.6.1 Dynamic System Call Instrumentation
In our prototype, we manually instrument all system calls of the C standard
library with the necessary patch instructions, consisting of a load of an immediate
patch value followed by applying the patch value to the CFI state. The immediate
value is zero and is set to its concrete value during the dynamic instrumentation of
the startup phase of the program. In a future version of SFP, we could instrument
the compiler to detect syscall instructions, i.e., svc, and then automatically insert
the necessary patch sequence. This enhancement would also include cases where
syscalls are invoked manually without the wrapper functions of the standard
library.

6.6.2 CFI Checking Policy Extension
SFP currently performs CFI checks when entering the kernel through a syscall
or a timer interrupt. A future version of this work can extend the CFI checking
policy to include all interrupts of the system. Our microbenchmark shows adding
new CFI checks adds minimal overhead to the syscall latency. Thus, adding
additional CFI checks for all interrupt handlers are expected to have minimal
impact on the system performance.

6.6.3 Compatibility
Although SFP uses FIPAC as the underlying CFI protection scheme, the design
or the protection mechanism of SFP is generic and compatible with different CFI

6.7. Related Work 104

protection schemes. To apply the protection of SFP to a different protection
scheme, two things are required. First, the CFI protection scheme must be stateful,
and there must be a possibility to manipulate the state, e.g., via standard or
custom instructions, to inject the system call patch. Second, it is necessary to be
able to dynamically compute a second system call patch required for the second-
stage linking in the kernel. With these requirements, SFP is compatible with
existing CFI protection schemes such as Sponge-Based Control-Flow Protection
(SCFP), SOFIA, or any other state-based CFI protection scheme.

6.7 Related Work
There already exists related work in the context of CFI protection schemes or
systems that enforce the correct system call sequence.

For example, SCFP [Wer+18] and SOFIA [Cle+17] are hardware-assisted
control-flow integrity protection schemes on the instruction level. They encrypt
the program’s instruction stream at compile-time and perform a fine-granular
decryption during runtime to retrieve the correct instruction sequence with
the help of intrusive hardware changes. However, these protection schemes are
designed for embedded use cases without running a rich operating system such as
Linux. Thus, these schemes don’t provide protection for the system call interface
since it does not exist. However, the design of SFP is generic; thus, system call
protection can be implemented on SCFP or SOFIA, as discussed in Section 6.6.3.

SFIP [Can+22] implements coarse-grained syscall flow protection for user-
space applications. They statically identify the possible transitions between
different syscalls at compile-time and then enforce that at runtime. SFIP adds
an average overhead of around 1.9 % on a set of macrobenchmarks, which is
very similar to the overheads of SFP. However, the overheads of SFP provide
a much larger scope of protection when a CFI protection scheme is already
deployed. Since SFIP only considers software attackers in their threat model,
their applicability to fault attacks is limited.

In the context of software-only attacks, there exists other work that tries to
learn and enforce the correct sequence of system calls. For example, machine
learning approaches are used to predict the syscall sequence and to detect
intrusion [Lv+18; ZPZ08]. Linux also has inbuilt support to minimize the kernel
surface that a user application can reach. The Secure Computing interface, or
Seccomp BPF [The21] of Linux, allows the user program to install filters that
limit which syscalls the application can use. When a system call is executed,
the kernel first verifies if the system call is allowed and then executes it or not.
However, within the limited set of system calls, faults can still bypass them or
hijack the execution to a different system call in the allowed set.

6.8. Conclusion 105

6.8 Conclusion
In this chapter, we presented SFP, a protection mechanism that provides system
call flow protection on top of ordinary CFI, protecting the interface to the kernel
against both software and fault attacks. We show that an already employed
CFI protection scheme can be used as a versatile tool to protect the system call
interface to the kernel. Furthermore, we present a new CFI checking policy at
the edge of the kernel to verify the CFI state for all transitions to the kernel.
Combined with a dynamic CFI instrumentation on program startup, the attacker
cannot learn CFI or system call-related information from subsequent program
executions. We showed a prototype implementation comprising an LLVM-based
toolchain to automatically instrument arbitrary programs and protect all system
calls. A modified Linux kernel running on a Raspberry Pi evaluation setup
to show the applicability to real-world programs. Our evaluation based on a
microbenchmark and on the SPEC 2017 application benchmark shows an average
runtime overhead of 20.6 %, which is only an increase of 1.8 % compared to
plain CFI protection. This slight increase in the performance impact shows the
effectiveness of SFP for protecting all system calls of a program.

The mechanism of SFP is generic in the sense that it can be protected with
different CFI protection schemes such as SCFP or SOFIA. Compared to other
protection schemes that provide protection for the order of executed syscalls,
SFP only adds minimal overhead on an already deployed protection mechanism,
i.e., CFI.

7
Secure Comparisons and Conditional

Branches for CFI

Control-Flow Integrity (CFI), as discussed in Chapter 5, is one pillar for secure
software execution in the presence of fault attacks. While FIPAC is one concept
for fine granular CFI for commodity systems, there are plenty of other CFI
protection schemes with different trade-offs. For example, there are other pure
software-based protection schemes such as CFCSS [OSM02] or hardware-based
approaches like Sponge-Based Control-Flow Protection (SCFP) [Wer+18] and
SOFIA [Cle+17], which all protect against fault-based control-flow attacks.
Unfortunately, all these schemes have one common unsolved problem. While
they provide fine-granular protection of the Control-Flow Graph (CFG), i.e., on
the basic block or even instruction level, they lack the protection of conditional
branches, the point where data and control-flow merge. We discussed the details
of the control-flow and conditional branches in Chapter 3.

A conditional branch determines the program flow of the executed software
based on a flag or based on the comparison of two values. While the basic
functionality of a conditional branch is quite simple, the correct execution is
highly critical for the security of computer systems. In the end, it is a conditional
branch that decides whether or not an entered password is considered correct,
a system update is performed, a signature check is considered successful, or a
user is granted access to a privileged function. The security implications are
huge if a critical program flow decision is not taken correctly and, for example,
unauthenticated software is executed [Ris17].

Under normal conditions, conditional branches execute correctly, i.e., the
branch is performed according to the comparison. However, when considering
faults inside the threat model, this assumption is not necessarily true anymore,

106

107

as discussed in Chapter 2. A fault on the data, the comparison, or on the actual
branch can redirect the execution to the wrong program location.

Even the presence of strong CFI protection only ensures that one of the
two possible execution paths and no completely different path is taken after a
conditional branch. However, CFI protection schemes do not protect the decision
of which path is taken against fault attacks. For conditional branches also, the
data influences the outcome of its execution. Thus, it is important that also the
processed data is protected with redundancy mechanisms. For example, [FSS09]
shows how to protect variables during arithmetic operations using AN-codes.
However, as also pointed out in [Hof+14], such schemes only protect data values
and their processing and no branching operations based on the data.

Today, there is a gap. There exist CFI and data protection schemes against
fault attacks. However, there is no method of linking them efficiently such that
the decision on which execution path to take is protected at the same level as
the control-flow and the processing of the data.

Contribution
In this chapter, we close the existing gap by providing protection for conditional
branches which is encoding-based, like the redundancy schemes for data and CFI.
We develop a generic approach to link a redundant comparison operation to the
CFI state. Thus, we merge the domain of data redundancy with CFI and protect
conditional branches.

We base our concrete instantiation of protected conditional branches on
arithmetic AN-codes. In this context, we develop new comparison algorithms for
all comparison predicated that use the data redundancy to compute a redundant
condition value. Our algorithms preserve the Hamming distance of the encoding
scheme, thus, computing condition values that are secure against fault attacks. By
linking this protected condition value to the CFI state, we bind the control-flow
and execution to the previously computed comparison and protect the actual
conditional branch.

To showcase the applicability of the design, we develop an LLVM-based
toolchain that automatically protects conditional branches. On annotated func-
tions, we automatically provide branch and data protection by transforming
all branch-related data and operations to the AN-code domain and inserting
protected comparison algorithms, which result is linked to the CFI state. Finally,
we evaluate the design isolated and present a use case based on a secure boot
scenario. Summarized, our concrete contributions are as follows:

• We present a generic solution that closes the gap of unprotected conditional
branches in the presence of a CFI protection scheme. Conditional branches
are protected by linking a redundant comparison result with the redundancy
of the CFI protection scheme.

• We show that we can use AN-codes to efficiently perform a redundant
comparison of encoded values which preserves the redundancy.

7.1. Threat Model and Related Work 108

• We present an LLVM compiler extension to automatically identify and
protect conditional branches based on the concept of AN-codes. We provide
experimental results showing that the overhead in terms of code size and
runtime is lower than state-of-the-art duplication schemes. Furthermore, a
bootloader application can efficiently be protected with 2.4 % code overhead
and with less than 0.1 % runtime overhead.

Scientific Contribution

Chapter 7 is primarily based on the following publication that was pre-
sented at DATE 2018 in Dresden (Germany).

Robert Schilling, Mario Werner, and Stefan Mangard. “Securing con-
ditional branches in the presence of fault attacks.” In: 2018 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2018,
Dresden, Germany, March 19-23, 2018. IEEE, 2018, pp. 1586–1591. doi:
10.23919/DATE.2018.8342268

I am the main author of this paper, developed the algorithm, integrated
that into a compiler, and performed all the evaluation steps. Mario
Werner contributed to this work by writing the background section. Stefan
Mangard supported this work through technical discussions and by writing
parts of the introduction.

Outline
The structure of this chapter is as follows. We define the threat model and
discuss existing countermeasures for conditional branches in Section 7.1. In
Section 7.2, we present how we protect conditional branches in this setting.
We discuss a novel approach to compute a redundant comparison result used
for protected conditional branches in Section 7.3. In Section 7.4, we present a
compiler extension to protect conditional branches automatically and evaluate
the overhead. Section 7.5 analyzes the security of the countermeasure, and finally,
in Section 7.7, we conclude this chapter.

7.1 Threat Model and Related Work
In this section, we define the threat model, discuss existing methods to protect
branches, and show the limitations of existing CFI protection schemes in the
context of protecting conditional branches.

7.1.1 Threat Model
We consider an active attacker that is capable of inducing faults in the system.
Faults can occur once or multiple times with multiple bits modified. We assume
the presence of a fine-granular state-based CFI protection scheme, i.e., on the

https://doi.org/10.23919/DATE.2018.8342268

7.2. Protecting Conditional Branches against Fault Attacks 109

basic block or even on the instruction level. This can be achieved with the FIPAC
from Chapter 5 or hardware-based CFI protection schemes [Cle+16; Wer+18;
WWM15]. Furthermore, we assume the data of the program to be encoded
redundantly.

7.1.2 Conditional Branch Protection via Re-checking
One way of protecting a conditional branch against fault attacks is to check the
condition for the branch again after the branch has been taken [Ris23b]. This
duplication approach increases security and can be scaled to an arbitrary order.
However, this duplication approach leads to significant overheads on one side,
and it can be attacked by inducing multiple times the same fault. The options for
creating diversity by using different branches to make attacks harder are limited.
Typically, the same hardware multiplexer for all branches decides which address
is loaded next and remains as a single point of failure.

7.1.3 Conditional Branches in the Context of CFI
CFI protection schemes in the context of fault attacks rely on an internal state
S, which gets updated at a certain granularity, e.g., on basic block or instruction
granularity. For FIPAC, this occurs once for every basic block. Independent
of the concrete CFI protection scheme, control-flow transfers like conditional
branches require special treatment. On control-flow transfers, the internal state
S diverges because the instruction stream diverges. When the control-flow graph
merges at a later point in the program, the CFI state S also needs to merge. To
support this, CFI protection schemes either use correction values or replace the
state.

Although CFI protection mechanisms can deal with conditional branches,
they cannot protect them. Such a scheme only ensures that one of the correct
successor’s blocks is executed after the branch, but the correct selection is
completely unprotected, leaving a single point of failure. A single bitflip, for
example, during the comparison operation of a conditional branch, can redirect
the control-flow to the wrong successor basic block, which is still valid in terms
of CFI.

7.2 Protecting Conditional Branches against Fault
Attacks

A conditional branch consists of two operations: a comparison step and a branch
operation. The comparison takes two inputs, x and y (in the general case, two
register values), compares them with a predicate P (e.g., <), and results in a
1-bit signal indicating if the comparison is true or false. Typically, this signal is
part of the Central Processing Unit (CPU) flags. The branch operation takes
this signal and decides how to update the Program Counter (PC), which can end
up with two different values PC1 and PC2, depending on whether the branch

7.2. Protecting Conditional Branches against Fault Attacks 110

CMP BRP
(PC

1
,S

1
),

(PC
2
,S

2
)

x
1

Standard Compare & Branch

y

Figure 7.1: Conditional branch with CFI state.

was taken or not. Depending on the CPU architecture, the compare and branch
operation is implemented as a single instruction or as two dedicated instructions.

In the presence of a fine-granular CFI protection mechanism, i.e., on the
basic block or even on the instruction level, conditional branches work slightly
differently. Again, there is a comparison and branch operation, as shown in
Figure 7.1. However, the CFI protection mechanism contains a dedicated internal
state S for each value of the program counter, which is updated when executing
the conditional branch. Here, the output of a conditional branch is two different
PC values PC1, and PC2, with their corresponding CFI states S1 and S2.

However, even in the presence of a CFI protection scheme, there are three
different error sources, which are not protected and can lead to a wrong execution:

1. Faulting the operands. Modifications on the branch operands or any data
that leads to the comparison can result in a wrongly executed conditional
branch.

2. Faulting the comparison. The value deciding whether a conditional branch
is taken or not, the condition signal, is a 1-bit signal. An attacker being able
to control this signal precisely can change the execution of the conditional
branch.

3. Faulting the branch. A fault modifies the execution of the branch such that
the branch is taken, although the condition value says otherwise or vice
versa.

To protect conditional branches, we assume that data and all performed
operations on it are encoded redundantly, e.g., via AN-codes. We generically
address the latter two points as follows: We first use a redundantly encoded
condition computation to ensure the integrity of the condition value. This encoded
comparison takes two encoded values, xc, and yc, a comparison predicate P , and
outputs a redundantly encoded condition result, which Hamming distance is large
enough to maintain the same security level throughout the whole conditional
branch. The comparison predicate P does not require redundancy by means of
encoding since a different predicate uses a different expected condition value.
We then use the standard compare and branch mechanism that compares the
redundant comparison result computed in software with one of the expected
condition values.

Without further measure, this would introduce an intermediate unprotected
1-bit signal to decide if the branch should be taken. To mitigate this problem, we

7.3. Protected Comparisons with AN-Codes 111

CMP BR
Constant

(PC
1
,S’

1
),

(PC
2
,S’

2
)

CFI Update
1

Enc.
CMP

nx
c

y
c

Standard Compare & Branch

P
P

=

(PC
1
,S

1
),

(PC
2
,S

2
)

Figure 7.2: Protected conditional branch with state update and n-bit redundantly
encoded comparison.

exploit the redundancy of the encoded comparison result and merge this value as
part of the CFI state update into the redundancy of the CFI protection scheme
(Figure 7.2). Only if the condition is computed correctly and the branch is
executed correctly the states for S′

1 and S′
2 are correct. This approach eliminates

the single point of failure present in state-of-the-art CFI protection schemes by
not relying on a 1-bit condition value but on a redundantly encoded condition
value linked with the CFI state. The comparison is protected by using an encoded
comparison operation that yields a redundant result. The final conditional branch
is protected by linking the redundant condition value with the CFI redundancy.
Fault attacks in both cases yield an invalid state S, which is detectable.

7.2.1 Requirements for CFI Protection Scheme
Using an encoded comparison operation ahead of an ordinary conditional branch
makes this design modular and flexible allowing different encodings with different
security levels to be used at various program locations. The only requirement
for the CFI protection is the ability to merge a value from the register file into
the internal state CFI state. Consequently, our protection mechanism makes it
attractive and compatible with many different CFI protection schemes, including
pure software-based designs such as FIPAC or hardware-based approaches such
as SCFP [Wer+18]. We further discuss the compatibility with these protections
schemes in Section 7.6.

7.3 Protected Comparisons with AN-Codes
In this work, we focus on AN-codes [Bro60], which are well-suited for fault pro-
tection [FSS09] and natively support different arithmetic operations. The details
for this encoding scheme, including their arithmetic properties, are discussed
in Section 2.5.2. However, as discussed by Hoffmann et al. [Hof+14], AN-codes
alone is not sufficient because conditional branches are still a single point of
failure.

In this section, we discuss a redundant comparison framework which is
exploiting the arithmetic properties of AN-codes, which adheres to the interface
definition in Equation (7.1). The inputs, the internals, and the output are
encoded such that there is no single point of failure. The two possible outputs
of the encoded comparison operation should have a Hamming distance larger
or equal than a constant D, where D denotes the minimum security level in

7.3. Protected Comparisons with AN-Codes 112

bits of the data encoding and the CFI redundancy. Furthermore, we want to
avoid the all-zero and all-one condition results because faulting to these values is
easier than to others due to the hardware implementation (e.g., the reset line of
a register can initialize its value to zero).

condition←EncodedCompare (P, xc, yc) (7.1)
with condition ∈ {C1, C2} and
Hamming distance (C1, C2) ≥ D

AN-encoded data can be compared using a standard compare instruction.
However, such a simple comparison removes all redundancy, and the result is
stored as a 1-bit signal inside the CPU. Hoffmann et al. [Hof+14] found this issue
during fault simulation. Instead, we compute the comparison and preserve the
redundancy of the AN-codes avoiding this single point of failure.

To compute the xc < yc comparison, where xc and yc are AN-coded variables,
we first start with a subtraction, as this is the basis for all comparisons, including
standard comparison operations. Based on the sign of this subtraction result, we
get the information shown in Equation (7.2). However, we cannot directly use
the sign bit because it is not redundant. The challenging task is performing an
entropy compression, where we map the encoded positive difference values to C1
and all encoded negative values to C2. Additionally, we want to maximize the
Hamming distance between C1 and C2, yielding a redundant comparison result.

xc − yc

{
positive if xc ≥ yc

negative if xc < yc

(7.2)

Our approach arithmetically computes this entropy compression yielding a
comparison result that preserves the redundancy of the AN-code. When looking
at the difference in Equation (7.2), the congruence 0 ≡ (xc − yc) mod A is valid
because AN-codes are closed under subtraction in a signed representation. How-
ever, when interpreting the AN-code congruence in an unsigned representation,
this destroys the congruence for negative differences. For a positive difference, on
the other hand, the unsigned representation does not change anything. By inten-
tionally destroying the AN-code congruence for negative numbers due to casting
to unsigned, we are able to separate the two cases of Equation (7.2), yielding
two different values. Using 32-bit data types, the unsigned interpretation xu of a
signed negative value xs < 0 in the twos-complement representation is computed
as xu = 232 + xs. We exploit this property of twos-complement encoded negative
numbers for the required entropy compression. First, the difference is cast to an
unsigned value. This does not change the value of the difference if it originally
was positive. Negative values change according to the twos-complement, where
the AN-encoded difference becomes invalid. In Equation (7.3), we show the
conversion from the signed AN-code to the unsigned representation for negative
values of the difference.

7.3. Protected Comparisons with AN-Codes 113

Algorithm 3: AN-encoded < comparison.
Data: xc, yc ∈ AN-code, 0 < C < A.
Result: cond ∈ {C1, C2}.
begin

diff ←− (unsigned) xc − yc + C
cond ←− diff % A

end

(xc − yc)u = 232 + (xc − yc) (7.3)
= 232 + A · (x− y) (7.4)

When applying the AN-code congruence to that value by using a modulo
operation with A, we obtain a dedicated value for the negative difference, as
shown in Equation (7.5).

(
232 + A · (x− y)

)
%A = 232%A (7.5)

The relation described before only holds true for the negative difference. For
a positive difference in Equation (7.2), the AN-code congruence still returns
zero. However, as discussed before, having a comparison result that is zero is
not favorable. We avoid this zero comparison result for the true case by adding
constant 0 < C < A to the difference before we compute the remainder (this also
changes the comparison result for the false case).

Algorithm 3 summarizes how the encoded less-than comparison is computed.
The comparison result cond holds the value 232%A + C if xc is less than yc or the
value C if xc is larger or equal to yc. Any modification (e.g., due to a fault) to the
operands such that their AN-code gets invalid results in a different comparison
result, making it invalid.

The same scheme can be applied to compute a ≤, >, and ≥ comparison by
swapping the operands in the first subtraction and swapping the symbols for the
true and false cases. In Table 7.1, we summarize the comparison result values
and the subtraction order for all comparison predicates (except =, ̸=) for 32-bit
data types.

7.3.1 Protected Equal and Not-Equal Condition Computa-
tion

Computing the = and ̸= condition using AN-codes can be assembled by combining
the ≤ and ≥ condition. The = condition is true if both conditions are true
and false if only ≤ is true or ≥ is true. Both conditions cannot be false at the
same time. We combine these conditions using an addition operation. Using the

7.3. Protected Comparisons with AN-Codes 114

Algorithm 4: AN-encoded = and ̸= comparison.
Data: xc, yc ∈ AN-code, 0 < C < A.
Result: cond ∈ {C1, C2}.
begin

diff1 ←− (unsigned) xc − yc

diff1 ←− diff1 + C
rem1 ←− diff1 % A
diff2 ←− (unsigned) yc − xc

diff2 ←− diff2 + C
rem2 ←− diff2 % A
cond ←− rem1 + rem2

end

condition values for ≥ and ≤ from Table 7.1, the sum of both true values is 2 ·C.
The false case is the sum of one true and one false case resulting in the condition
value 232%A + 2 · C. The algorithm to compute the = or ̸= condition is shown
in Algorithm 4.

7.3.2 Parameter Selection
For the comparison algorithms, we used 32-bit registers and chose A to be
63877 (a super-A according to Hoffmann et al. [Hof+14]). This A maximizes the
functional value for 16-bit data and has a minimum Hamming distance of six
between all code words, allowing the code to detect up to 5-bit errors. We then
chose C such that it maximizes the Hamming distance between the true and false
symbol for one comparison. For the = and ̸= comparison, we select C = 14991,
and for the <,≤, >,≥ comparison, we select C = 29982. With both constants,
we reach a maximum Hamming distance D of 15-bit between the comparison
values.

Table 7.1: Condition values for encoded <, ≤, >, ≥ condition values.

Predicate Subtraction True Value False Value

> yc − xc 232%A + C C

≥ xc − yc C 232%A + C

< xc − yc 232%A + C C

≤ yc − xc C 232%A + C

7.4. Implementation and Evaluation 115

7.4 Implementation and Evaluation
To demonstrate that our protection mechanism for conditional branches is suf-
ficiently performant for real-world applications, we implemented the required
transformations into a C compiler and evaluated the concept using a simula-
tor for the ARMv7-M Instruction Set Architecture (ISA), i.e., used by ARM’s
Cortex-M3 processors. Although this countermeasure is fully compatible with
FIPAC from Chapter 5, we use a software-centered CFI protection scheme that
is based on the Generalized Path Signature Analysis (GPSA) implementation
from [WWM15]. We opted for a pure software implementation of our branch
protection scheme, which does not require hardware modifications on top of the
used CFI protection scheme.

7.4.1 Implementation
We implement the protection mechanism for protected conditional branches as
an extension to the LLVM [LA04] compiler framework. The resulting modified
compilation pipeline is depicted in Figure 7.3.

The compiler front end contains a new LLVM-specific function attribute
(i.e., protect_branches) to annotate functions that require AN-code protection
for their conditional branches. The AN-code instrumentation is performed in
the middle end. There, the optimized Intermediate Representation (IR) is
preprocessed by a custom Loop Decoupler pass which separates loop induction
variables from the use in arithmetic expressions or memory accesses, and a Lower
Select/Switch pass simplifying the IR for the subsequent AN Coder. The AN
Coder pass transforms all instructions, which end up in the comparison operation
of a conditional branch to the AN-domain. The affected instructions are identified
by slicing the program with respect to the operands of the conditional branches.
Moreover, the AN-code-based encoded compare algorithm is added here. Up to
this point in the compiler pipeline, all transformations are independent of the
target architecture and CFI protection scheme.

The CFI Instrumentation pass, which is located in the back end of the compiler,
is, in fact, the only architecture and CFI-specific part of our implementation.
This pass performs the CFI instrumentation itself and adds the state updates (as
discussed in Section 7.2) to the conditional branches.

7.4.2 Cost Analysis
Qualitatively speaking, the overhead of our implementation comprises three parts:
the cost of computation on encoded data yielding into a branch, the costs of the
branch protection scheme, and the costs of the CFI protection scheme. Given
that we solely propose a branch protection, we do not focus on analyzing the cost
of the used data protection or CFI protection scheme. In general, these costs are
highly application specific and, therefore, hard to predict. Still, our evaluations
indicate that the expected costs for enforcing CFI and for protecting data values

7.4. Implementation and Evaluation 116

F
ro

n
t E

n
d

IR
 O

p
tim

iz
e

rs

A
N

 C
o

d
e

r

IR IR IR

In
st

ru
ct

io
n

S
e

le
ct

io
n

C
F

I
In

st
ru

m
e

n
ta

tio
n

In
st

ru
ct

io
n

S
ch

e
d

ul
in

g

C
o

d
e

 E
m

is
si

o
n

Middle End Back End

Source
Code Binary

L
o

w
e

r
S

e
le

ct

IR

L
o

w
e

r
S

w
itc

h

IR

L
o

op
 D

ec
ou

p
le

r

IR

Figure 7.3: Modified LLVM compiler pipeline. Grey boxes indicate modifications or
additions of/to the regular compilation flow.

are quite reasonable when mostly requiring simple arithmetic operations (e.g.,
loop counters or accumulator variables).

Analyzing the cost of the encoded compare, and the state update operations
(Table 7.2) is possible precisely. The generic implementation1 of the proposed
AN-code-based encoded compare comprises additions, subtractions, and modulo
operations. Every ISA typically supports addition and subtraction, but modulo
is not necessarily supported directly and, therefore, often is more costly. With
the used ARMv7-M ISA, modulo has to be implemented using a combination of
a slow division (UDIV) and a multiply+subtract (MLS) instruction. As a result,
depending on the comparison predicate, between 12 and 26 bytes of memory
overhead and 6-33 cycles runtime overhead is generated for one encoded compare.
Hardware support for a fast modulo instruction would considerably reduce this
overhead.

The cost for state update operations is again highly dependent on the employed
CFI protection scheme. In the software-centered design, they are implemented
using one address load and a store of the comparison result to the CFI unit.

1Special encoding constants may have optimized implementations but different code proper-
ties.

Table 7.2: Qualitative overhead analysis of the building blocks.

Predicate Required Our Prototype
Operations Instructions Size / B Runtime / ca

>

≥
<

≤

1 +
1 -
1 %

1 ADD
1 SUB

1 UDIV
1 MLS

12 6-16

=
̸=

3 +
2 -
2 %

3 ADD
2 SUB

2 UDIV
2 MLS

26 13-33

aDivision on ARMv7-M requires between 2 and 12 cycles.

7.4. Implementation and Evaluation 117

These instructions are added to the beginning of the successor basic blocks of the
protected conditional branch and introduce 4 bytes code and 4 cycles of runtime
overhead per instantiation. An optimized CFI and branch protection design can
fully omit these costs.

7.4.3 Performance Evaluation
We use two micro-benchmarks to measure the overhead in terms of runtime and
code size. These benchmarks (integer compare and memcmp) test the branch
protection in isolation by exercising a single integer equal comparison and a
secure memory comparison with 128 elements. We compare this overhead with
a duplication approach, where we duplicate the conditional branch six times
consecutively to have a comparable single-bit fault tolerance to the AN-code-based
implementation (i.e., 6-bit Hamming distance for the encoded values). However,
this duplication approach does not protect any data or arithmetic operation
leading to the branch opposed to the AN-code-based scheme. As a macro-
benchmark, we implement a fault-protected version secure bootloader, similar to
the one in [Atm17]. Only programs which feature a valid ECDSA signature over
the program’s hash get executed. In this example, the memory comparison of
the signature verification and all subsequent conditional branches are protected.
This mitigates the single point of failure of a secure boot mechanism, which was
already a target of fault attacks.

The costs, as shown in Table 7.3, also include the overhead of computing on
the AN-encoded values. Based on the micro-benchmark results, we observe that
the performance in terms of code size and runtime is on par with the duplication
approach or even better. However, we do not only protect the conditional branch
but also protect the data and the arithmetic operations on it. When applying this
protection mechanism to the protected bootloader, the overhead is neglectable
since the crypto implementation dominates code size and runtime. The code
size overhead of less than 2.5 % and a neglectable runtime overhead makes this
countermeasure applicable to real-world applications.

Table 7.3: Size and runtime overhead of different branch protections.

Benchmark Metric CFI Duplication Prototype
abs abs + / % abs + / %

integer Size / B 12 128 967 86 617
compare Runtime / c 20 91 355 63 215

memcmp Size / B 68 272 300 276 306
Runtime / c 1689 10210 504 8905 427

bootloader Size / B 17252 — — 17672 2.435
Runtime / c 51888k — — 51888k 0.001

7.5. Security Analysis 118

7.5 Security Analysis
To state the security of the countermeasure, we analyze its fault resistance. If
there is a fault on a single location but with multiple bits flipped, the error
is transparent and detectable, relying on the code properties of the selected
A [FSS09]. For our parameter selection, we can detect up to 5-bit errors in
a single word during the calculation. In the final condition result, the error
detectability is even higher because only two symbols are valid. At this place, we
reach a Hamming distance of 15-bit between the two condition values.

However, if errors are spread over multiple locations/operations, the fault
detection capabilities of the AN-code decrease, and the code cannot detect as
many bits as before. To investigate this behavior, we performed a simulation
with faults at different locations. Simulations show that for our parameter
selection, the error detectability is reduced to 3-bits, arbitrarily placed over the
whole computation of the condition value. With four bits flipped over the whole
computation of a condition value, the error rate where an attacker can flip the
final condition value from true to false or vice versa is 0.0002 %, which increases
having more bits flipped.

7.6 Compatibility
In this work, we a the software-centric GPSA-based countermeasure [WWM15]
as the underlying CFI primitive. However, our approach is fully compatible with
other CFI protection schemes. In general, the only requirement to implement
secure conditional branches is a mechanism to inject data, i.e., the protected
condition value, ahead of executing the branch. This can either be done via
a dedicated instruction or can be combined into a special conditional branch
instruction.

7.6.1 Compatibility with FIPAC
Our method of protecting conditional branches is fully compatible with FIPAC,
which is purely implemented in software, as presented in Chapter 5. In FIPAC,
an eor instruction is used to perform a state update on the CFI state. This
instruction XORs a value that is stored in a general-purpose register to the CFI
state, which is also a general-purpose register. We can use this instruction to
inject or XOR the secure condition value to the CFI state ahead of executing
the ordinary and unprotected conditional branch.

7.6.2 Compatibility with SCFP
We also included the protection mechanism presented in this chapter to a hardware
implementation of the SCFP [Wer+18] CFI protection scheme. SCFP, with
our conditional branch protection, got integrated into a 4-stage open-source
RI5CY/CV32E40P [Ope23a; PULb] core and taped out to the Patronus [Sch+16]

7.7. Conclusion 119

Algorithm 5: Pseudocode of the protected conditional branch instruc-
tion bpdeq for the RISC-V architecture.

CFIState ← CFIState ⊕ rs1
if rs1 = rs2 then

CFIState ← CFIState ⊕ Patch
PC ← PC + offset

else
PC ← PC + 4

Application Specific Integrated Circuit (ASIC). For this purpose, we added
a new conditional instruction named bpdeq, targeted for our countermeasure.
The instruction, as detailed in Algorithm 5, performs in the first step a state
update with the first register operand ahead of the execution of the conditional
branch. This register holds the comparison result from the secure software-
based comparison algorithm, as discussed before. Later on, it performs an equal
comparison, performs the necessary state patch using the justifying signature,
and updates the program counter. Similar to the prototype implementation of
Section 7.4, the CFI state is only correct if the correct comparison result gets
injected and the subsequent conditional branch is executed the right way.

7.7 Conclusion
In this chapter, we close the gap of unprotected conditional branches in CFI
countermeasures in the presence of fault attacks. We eliminate the single point
of failure by adding an encoded comparison operation that yields a redundant
condition value. Using a standard compare and branch mechanism together with
the ability to merge the redundant comparison result with the CFI protection
mechanism allows us to protect the execution of a conditional branch. Our
approach is highly flexible, allowing us to use different encoded comparison
operations based on different encoding schemes with different security properties
at different places in the program. We exploit the properties of arithmetic AN-
codes and present novel comparison algorithms to compute the condition values
arithmetically but preserve the redundancy. We integrated this countermeasure in
the LLVM compiler to automatically protect conditional branches. Experimental
evaluation shows little overhead to security-critical programs, such as the signature
verification of a secure bootloader, making it applicable for real-world usage.

The modified compiler automatically transforms all branch-dependent data
and its dependence chain of operations to the protected AN-code domain. How-
ever, in certain situations, such as when the program employs operations not
supported in the AN-code domain, this transformation may not be fully achiev-
able. Additionally, the program may utilize redundancy mechanisms that are
incompatible with AN-codes. Despite these limitations, the proposed countermea-
sure could potentially e used solely to protect conditional branches. Right before

7.7. Conclusion 120

a conditional branch, both branch operands are encoded to the AN-code domain,
which are then used to carry out the secure conditional branch as proposed in
this chapter.

In summary, we believe this is a first step towards improved security for
conditional branches in the presence of CFI protection schemes. As discussed at
the beginning of this chapter, conditional branches are heavily used in security-
critical operations, thus, their protection has importance. The proposed scheme
is generic in the sense that it could be extended for data encoded with other
encoding schemes but also in terms of compatibility with the CFI protection
scheme.

8
Secure Memory Accesses in the Presence

of Fault Attacks

In the previous chapters, we looked at the protection of the control-flow against
fault attacks and designed software-based countermeasures using existing archi-
tectural features. But even with a protected control-flow, the attack surface
is still large enough to compromise the system, e.g., via memory accesses. A
memory access is a highly critical operation. Many decisions inside a program
rely on the correct execution of a memory access. Password checks, signature
verification, or grants to a privileged function, they all depend on the genuine
execution of a memory access.

Under normal operating conditions, a memory access reads/writes from/to
the desired location. However, the situation changes dramatically as soon as
intentionally induced faults, i.e., fault attacks, are considered. A fault on the
processor’s internal bus during a read or write operation either reads the wrong
data from memory or writes it to the wrong location. Both cases are not trivially
detectable with data redundancy, given that the data remains unmodified. Similar
effects can be triggered by injecting faults into pointers, which are typically not
prevented by these schemes. Since we are focusing on addressing errors, e.g.,
with faults on the pointer or on the memory bus, faults in the memory, e.g., via
Rowhammer, are not the main concern of this work.

While there exist data encoding schemes that also aim to protect against
addressing errors, i.e., ANB-codes (cf. Section 2.5.2), they are very costly
and impose severe restrictions on the protected code. ANB-codes introduce a
tremendous runtime overhead of 90 % on average on top of already expensive
AN-codes solely to solve the memory access problem. Furthermore, they can
only protect a limited set of variables with well-known memory alignment and

121

122

size. More efficient and less restrictive approaches are needed to protect memory
accesses against address tampering.

Contribution
This chapter addresses the issue of unprotected memory accesses in the context
of fault attacks by proposing a hardware-software co-design. We introduce a
practical solution to detect address tampering in pointers and on memory buses
with an extended hardware design. Our generic approach works independently
of the used code and data protection schemes and, therefore, can effectively be
combined with state-of-the-art techniques in the context of hardening general-
purpose computing against fault attacks.

First, we present a new approach to protect pointers against faults with
negligible overhead in terms of runtime and storage requirements. We encode
pointers using a multi-residue arithmetic code, which allows us to detect faults
on encoded pointers during both storage and computation. The redundancy
information of the code word is hereby stored in the unused upper bits of a
pointer to fully utilize the available register space and yield zero overhead for
storing an encoded pointer. This design decision is inspired by ARM Pointer
Authentication (ARM PA), which uses a similar trade-off to embed a Message
Authentication Code (MAC) into a pointer. Furthermore, by transforming the
pointer arithmetic into the encoded multi-residue domain, the protection of the
pointer is also maintained also when performing arithmetic operations on the
pointer, e.g., when adding an offset to the stack pointer. We add new instructions
to the processor that efficiently operate on encoded pointers.

Second, we propose an efficient way to protect memory accesses from tam-
pering by linking the stored data in memory with the address of the access. We
establish this link whenever data is written to the memory and remove the link
as soon as the data is read back into the processor. When considering fault
attacks, countermeasures like data encoding are already necessarily employed. By
linking the redundant address information with the encoded data, faults during
addressing manifest as errors in the redundantly encoded data, where they can
be detected. As a result, data integrity checks implicitly also check for address
tampering and make explicit addressing error checks unnecessary.

Finally, to evaluate the concept, we integrated our protection mechanism into
a Field Programmable Gate Array (FPGA) hardware implementation of an open-
source RISC-V processor. Furthermore, to avoid the tedious manual encoding of
all pointers and addresses inside the program, we integrated this concept directly
into an LLVM-based C compiler, which is capable of automatically protecting
complex codebases without manual interference. The resulting prototype induces
10 % code size and less than 7 % runtime overhead on average. Summarized, our
contributions are:

• To protect the memory subsystem, we encode all pointers to the multi-
residue domain and perform protected pointer arithmetic with zero overhead
in terms of storage costs.

8.1. Background of Memory Access 123

• To secure the memory access itself, we link the pointer’s redundancy through
the memory bus down to the memory cell.

• We provide an LLVM-based toolchain to automatically encode all pointers
and pointer arithmetic to the residue domain. All memory accesses are
replaced with its linked counterpart, which uses an encoded pointer.

• To show the feasibility of the design, we enhance the hardware design of a
RISC-V core with new instructions and evaluate the concept on different
benchmarks.

Scientific Contribution

Chapter 8 is primarily based on the following publication that was pre-
sented at ACSAC 2018 in San Juan (Puerto Rico).

Robert Schilling, Mario Werner, Pascal Nasahl, and Stefan Mangard.
“Pointing in the Right Direction - Securing Memory Accesses in a Faulty
World.” In: Proceedings of the 34th Annual Computer Security Applica-
tions Conference, ACSAC 2018, San Juan, PR, USA, December 03-07,
2018. ACM, 2018, pp. 595–604. doi: 10.1145/3274694.3274728

I am the main author of this paper, developed the technical idea and
the prototype toolchain, and performed all experiments and evaluations.
Mario Werner contributed to the text of this paper. Pascal Nasahl
contributed to the prototype RISC-V hardware implementation. Stefan
Mangard supported this work in many discussions and giving feedback to
the paper.

Outline
The remainder of this chapter is structured as follows. Section 8.1 discusses
related work on memory access protection or pointer protection. Section 8.2
presents the thread model and attack scenario. In Section 8.3, we describe how
we protect pointers against fault attacks. The approach to link the pointer
protection with data encoding is presented in Section 8.4. Section 8.5 details how
we extend the RISC-V instruction set to support encoded pointers and discusses
our compiler modifications. Finally, Section 8.6 evaluates the overhead, and
Section 8.7 concludes this chapter.

8.1 Background of Memory Access
In this section, we describe the related concepts, which aim to secure pointers or
a memory access in general.

https://doi.org/10.1145/3274694.3274728

8.2. Threat Model and Attack Scenario 124

8.1.1 ANB-Codes for Memory Access Protection
There already exist mechanisms to protect the memory access against tampering.
One method is the use of ANB-codes, as detailed in Section 2.5.2. By assign-
ing/adding a variable-dependent signature Bx, each code word gets a unique
checking property, which is used to detect wrong memory accesses.

After loading a value from the memory back to the register, the variable is
identified to ensure the memory access was not tampered with. Unfortunately,
this encoding scheme has significant challenges to be used in practice. As already
discussed, the ANB-codes add significant overhead – around 90 % – on top of
ordinary AN-codes- Furthermore, a compiler always needs to track which data
is used where to correctly identify wrong memory accesses. In practice, this
is not possible for arbitrary programs. Finally, AN- and ANB-codes limit the
range of values significantly, thus only providing protection to a limited set of
computations.

8.1.2 ARM Pointer Authentication
Protecting pointers against tampering is not only relevant in the context of
fault attacks but is also used to counteract software attacks. As discussed in
Section 5.1, ARM added a Pointer Authentication [Qua17], to cryptographically
sign and authenticate pointers.

Even though the general approach is similar to our work, the provided capabil-
ities and the resulting protection is vastly different. ARM Pointer Authentication
aims to only protect special pointers against software attacks. In Pointer Au-
thentication Code (PAC), authenticated pointers cannot be protected during
pointer arithmetic since there is no homomorphism for the MAC. Furthermore,
ARM PA only aims to protect the pointer. The memory access, which uses an
authenticated pointer, is completely unprotected, and there are no protection
mechanisms to ensure that the accessed memory actually originates from the
correct address.

8.2 Threat Model and Attack Scenario
This section presents the threat model we consider and shows how fault attacks
can hijack a memory access in different ways.

8.2.1 Threat Model
In this work, we shift the threat model from the control-flow part of the system to
the memory subsystem of the processor and System-on-Chip (SoC). We assume a
powerful attacker which performs fault attacks in order to compromise a system
by redirecting memory accesses. Faults can be induced into instructions and data
at various places, for example, in registers, during computation in the Arithmetic
Logic Unit (ALU), on buses, and in memory. Many of these attack vectors can
be covered by existing and established countermeasures, which we assume to be

8.2. Threat Model and Attack Scenario 125

p = 0x1001

p = 0x1003

p = 0x1001

falsec

truec

truec

0x1000

0x1005

Figure 8.1: Attack vector: Modified pointers and manipulated memory accesses.

in place. Control-Flow Integrity (CFI) protections schemes against fault attacks
such as FIPAC from Chapter 5 with the conditional protection from Chapter 7
or related work [Cle+17; Wer+18] can enforce the authenticity of instructions
as well as their execution sequence, thus, can be used to protect code against
faults. Furthermore, such a CFI protection scheme already protects function
pointers, which do not require further protection. Data, on the other hand, can
be protected during computation and storage using data encoding techniques like,
for example, arithmetic codes like residue or ANBD-codes. These redundancy
schemes also cover fault attacks on the memory, e.g., via Rowhammer. Details of
various of those countermeasures are discussed in Chapter 2.

However, as soon as data is transferred via a memory bus, these encoding
schemes are insufficient. While the value itself is protected via the code, the cor-
responding address information remains vulnerable to fault attacks. Furthermore,
pointers typically remain unprotected by the data encoding schemes considering
that eventually, the plain value of the pointer is used to address the memory.

8.2.2 Attack Scenario
To illustrate the problem, Figure 8.1 visualizes a simple memory access. On
the left side, there is the pointer used for a memory access. On the right side,
there is the memory, and the arrow in between denotes the memory access. The
data in the memory is redundantly encoded, denoted by the c-subscript of the
variables. Originally, the pointer p points to the address 0x1001 to read out the
value falsec from the memory. However, a fault can manipulate the memory
access to read out a wrong value. In particular, there are two error sources, which
can lead to a wrong memory access. First, the attacker can modify the pointer,
as shown in the middle example in Figure 8.1. If a pointer gets modified, then all
subsequent memory accesses lead to a wrong location. An attacker could, e.g.,
modify two pointers used for a signature comparison to point to the same location,
which always bypasses the memory comparison. This can occur anywhere in the
program, also during pointer arithmetic. The second source of a manipulated
memory access is the memory operation itself. When assuming the pointer is
correct and not manipulated, the memory access can still be manipulated. A
fault on the address bus can redirect the memory access to a wrong location, as
indicated in the third example.

8.3. Pointer Protection with Residue Codes 126

Both of these attack vectors can lead to a wrong memory access. Today, there
is no efficient way to protect them, leaving frequently used memory operations
completely unprotected against fault attacks.

8.3 Pointer Protection with Residue Codes
The manipulation of a memory access is possible by attacking two different parts
of the access. The first one is the pointer itself, which is used to perform the
memory access. This section details how we use multi-residue codes to protect
every data pointer inside a program against fault attacks. Furthermore, we
present how to integrate the multi-residue code into our pointer representation
and elaborate on the additionally needed hardware support.

8.3.1 Overview
Pointers are ubiquitous. Every memory access, e.g., accessing a variable on the
stack, uses a pointer to address the memory. However, when considering fault
attacks, pointers may be manipulated to point to a different memory location.

To counteract this threat, we encode all pointers to a redundant representation
where faults are detectable. As presented in Section 2.5.2, there are two classes
of suitable codes: systematic and non-systematic codes, which can have similar
properties in terms of error detection capabilities and support for computation.
However, a systematic code has advantages of protecting a pointer. Namely, it
supports direct access to the functional value and can, therefore, immediately
be used to address memory. On the other hand, using a non-systematic code
to protect the pointer requires performing a potentially expensive decoding
operation before the actual address is available. AN-codes, as an example for non-
systematic codes, require a costly integer division during the decoding operation.
Hence, this division would be required for every memory access.

We encode pointers using a systematic multi-residue code with a scalable
number of moduli. Details about the properties of multi-residue codes are
discussed in Section 2.5.2. Here, an encoded pointer pc is denoted as a tuple
(p, rp), where p is the original value of the pointer, and rp denotes the redundancy
part comprising the residues of p given a moduli set M . Using a multi-residue
code to protect the pointer gives two advantages. On the one hand, the strength
of the code, i.e., the number of detectable bitflips, is scalable with the number of
residues. On the other hand, residue codes are arithmetic codes and, therefore,
also support arithmetic instructions, like addition and subtraction, natively.
This allows us to perform pointer arithmetic, for example, the stack pointer
manipulation in function prologues and epilogues, directly inside the encoded
domain without decoding the pointer.

8.3. Pointer Protection with Residue Codes 127

8.3.2 Pointer Layout and Residue-Code Selection
Adding separable redundancy to data implies that the additional information
needs to be stored somewhere in order to provide a value. In the context of
protecting a processor register, various possibilities exist to provide this storage.

For example, an additional parallel register file can be added to the processor,
which only holds the redundancy part and gets updated in lockstep with the
actual values [MM11]. However, this approach is quite costly for our use case,
considering that only a small number of registers typically hold pointers at a
certain point in time. Alternatively, pairs of regular registers can be used to
store the data and its redundancy. Unfortunately, doing so increases the register
pressure and lowers the overall performance. Moreover, without adding costly
access ports to the register file, multiple instructions have to be performed on
every pointer operation, even for simple ones like an increment. Finally, at
least for modern RISC Instruction Set Architectures (ISAs) [Wat+14], adding
additional operands into the instruction encoding is difficult without increasing
the instruction size and adding new read ports to the register file.

In this work, we followed a different approach and store the redundancy
information directly into the upper bits of the pointer. Similar to PAC, i.e.,
ARM’s Pointer Authentication feature, this approach introduces zero overhead
in terms of storage for the redundancy at the cost of some bits of address space.
Additionally, this dense representation of an encoded pointer allows us to add
new combined residue arithmetic instructions, which operate on the functional
value and on the residues in parallel, rather than requiring separate instructions
to handle both. By storing the redundant pointer in one register, we can,
therefore, use the same instruction format as regular instructions and do not
require extensive modifications of the ISA or hardware to maintain performance.

Considering that the directly accessible address space is limited, embedding
the residues into the pointer works best for modern 64-bit architectures. Therefore,
the following design considerations, as well as our prototype, which is presented
in Section 8.5, is built upon such an architecture. The overall concept can still
be applied to 32-bit architectures with reduced error detection capabilities or via
a different storage option.

Parameter Selection

When selecting the parameters of an error detecting code, it is always a trade-off
between error detection capabilities and the overhead introduced by the code.
However, since the functional value, including the redundancy, is stored in a
single register, also the remaining address space has to be considered. For our
prototype, we focus on a 64-bit architecture and partition our pointers into
24-bit redundancy and a 40-bit functional value. The resulting pointers can still
address one terabyte of memory, which is sufficient for most applications. This
partitioning is in line with related work, i.e., ARM PA, which is described in
detail in Section 5.1.

As a concrete code, we instantiate a multi-residue code with the moduli set

8.3. Pointer Protection with Residue Codes 128

63 56 51 46 43 40 39 0

r4,p r3,p r2,p r1,p r0,p

M
M

IO p

Figure 8.2: Encoded pointer representation. The actual 40-bit pointer value p, the
MMIO tag bit, and 23 bits of redundancy rp comprise an encoded 64-bit
pointer.

M = {5, 7, 17, 31, 127}, which is an extension to the one presented in [MM11].
This moduli set yields a code with a Hamming distance of D = 5 and is capable
of detecting up to four bitflips in the encoded 64-bit pointer value. Storing
the residues for these moduli requires a total of 23 bits, i.e., 3, 3, 5, 5, 7 bits,
respectively. The last remaining bit is used as a tag bit and specifies if data
accessed via the pointer have to perform data linking/unlinking, as presented
later in Section 8.4.3. The resulting register layout of such an encoded pointer is
shown in Figure 8.2.

8.3.3 Pointer Operations
Pointers are used not only to perform a memory access but also to perform pointer
arithmetic. To maintain good performance, it is therefore vital that the encoded
pointers support these computations as efficiently as possible. Notably, as the
term pointer arithmetic already hints, arithmetic computations, like addition and
subtraction, are the most common operations that are performed on pointers. For
example, accessing larger sequential memory chunks via a pointer involves a large
number of additions between the pointer and the access stride in a loop. Similarly,
next to every function call, the respective stack frame size is added and subtracted
to/from the stack pointer in the function’s prologue and epilogue. Precisely these
types of operations are natively supported by the used multi-residue code and
can therefore be performed in the encoded domain.

On the other hand, more work is required for operations that are not directly
supported by the multi-residue code. The simplest approach is probably to
perform the operation on the plain functional value only and restore the encod-
ing afterward. To ensure the correctness of the computation, then additional
countermeasures like replication have to be used. Alternatively, such operations
can be performed by first converting the pointer to a different code, in which the
computations are straightforward, followed by converting the differently encoded
result back into multi-residue representation. Still, such operations comprise only
a very small number of pointer operations compared to arithmetic operations.

Software vs. Hardware

In a multi-residue code, the addition operation is performed on the functional
value and on all its residues. This operation can be executed in hardware or
software. However, performing this operation in software is challenging, as it
involves a modulo reduction for each residue.

8.4. Evolved Memory Access Protection 129

Looking only at a single modulo operation, there exist several options for
implementing the reduction in software: First, a normal modulo instruction from
the ISA can be used. Although such an instruction does not have much code
overhead, a modulo operation involves a costly integer division which usually
takes multiple clock cycles to finish. Second, instead of a modulo operation, a
conditional subtraction can be used for the modular reduction. Third, there are
optimized modulo algorithms available [Jon], but their overhead is still large. A
single modular addition with an optimized reduction with the modulus five takes
at least 18 instructions on our RISC-V target architecture.

Considering that the runtime of these solutions additionally has to be mul-
tiplied with the number of used residues makes a software solution even less
attractive. Furthermore, even if the performance penalty is acceptable, additional
registers have to be reserved for implementing the reduction functionality. Sum-
marizing, a software-based approach to perform residue operations, while feasible,
is not very practical. Therefore, hardware-based approaches to implementing the
residue operations have been investigated.

In particular, in our prototype, we add new instructions that permit to
perform addition and subtraction of multi-residue encoded pointers. Section 8.5.1
discusses the new instructions in detail, focusing on the target architecture.
Furthermore, an instruction for performing the expensive encoding operation is
added, which computes the modulus for each residue. For convenience reasons,
also a dedicated decoding operation is added to the ISA.

8.4 Evolved Memory Access Protection
Apart from faulting the pointer, the second source to manipulate a memory
access is the memory operation itself. If the attacker is able to induce faults on
the address bus, the memory access can be redirected to a different location. In
this section, we present a method to link the data with its respective address,
where addressing errors are transformed into data errors which can subsequently
be detected using a data-protection scheme.

8.4.1 Overview
In order to be able to detect address tampering, a way to uniquely identify
incorrectly accessed memory is needed. A common approach to establish this
link between the data and the address is augmenting the data-protection scheme,
which is anyway needed to protect the data against faults.

For example, ANB-codes embed the identity of the variable, in the form of
a unique residue Bx, into a required underlying AN-code-based data encoding.
However, this approach has several drawbacks. For example, working on vari-
able granularity requires concise data-flow information, which is, in real-world
applications, hard to acquire for arbitrary memory operations, and limits the
applicability of the approach. Furthermore, maintaining these identities during

8.4. Evolved Memory Access Protection 130

calculation is quite costly. Finally, the approach is strongly linked with AN-codes
and cannot easily be applied to other data-protection schemes.

Our scheme takes an entirely different approach to prevent address tampering.
Instead of constructively embedding the address of the data into the data-
protection code, our scheme destructively overlays data that is written to the
memory with the respective memory address. As a result, addressing errors are
transformed into data errors that get detectable as soon as the overlay is removed
again.

In more detail, before data is written from a register to the memory bus by the
processor, the data gets encoded with respect to the target address. Conceptually,
this kind of linking is similar to encrypting the data in an address-dependent
way. However, since we do not strive for confidentiality with our approach, the
use of a cryptographically secure cipher is not needed. The resulting encoded
data is then stored simply into memory like in a regular system.

When data is read back from memory into a processor register, the decoding
with respect to the target address is performed. Considering that the performed
decoding operation is the inverse of the encoding, a genuine data value is restored
only when the read has been performed from the correct address. Otherwise,
an incorrect data value is generated, which can be detected via the used data-
protection scheme. Note that the detection of address tampering during memory
writes is possible like this as well. However, the detection is delayed to the point
where the incorrectly written value is read back into the processor.

8.4.2 The Linking Approach
As already mentioned, the general idea behind our memory access protection
approach is to link the data that is stored in memory with its respective address.
Instead of directly writing a register value DReg into memory at a certain address
p (i.e., mem [p] = DReg), a little more work has to be performed in our scheme.
Namely, as shown in Equation (8.1), the linking function l has to be evaluated in
order to determine the value that is actually written to the memory at address p.

mem [p] = l (p, DReg) = lp (DReg) (8.1)

The purpose of this linking function is to combine the address p with the
data value DReg. However, not every function can be used for this purpose. At
the very least, the following two requirements have to be fulfilled in this context.
First, for each address p, the linking function lp has to be a permutation. Having
this property means that lp performs a bijective mapping and that an inverse
function l−1

p exists, as shown in Equation (8.2).

∀p, DReg → l−1
p (lp (DReg)) = DReg (8.2)

Subsequently, memory read operations can be implemented using this inverse
function, as shown in Equation (8.3). As a result, from the software perspec-
tive, encoding data when storing to memory and decoding data when loading

8.4. Evolved Memory Access Protection 131

from memory is completely transparent, yields the expected result, and can be
performed for every memory access.

DReg = l−1 (p, mem [p]) = l−1
p (mem [p]) (8.3)

Second, to ensure that addressing faults are detectable, data encoded under
one address should yield a modified value when being decoded under a different
address, as shown in Equation (8.4). Furthermore, the modified value should not
be a valid code word in terms of the used data-protection code.

∀p, p′, DReg : p ̸= p′ → l−1
p′ (lp (DReg)) ̸= DReg (8.4)

Function Selection

Various functions, such as cryptographic ciphers, fulfill these requirements and
are therefore suitable to link the data and the address information as required
by the memory access protection scheme. However, given that we aim for a
low-overhead design, less resource-demanding functions have been investigated.

Interestingly, already a simply XOR operation, as shown in Equation (8.5)
and Equation (8.6), is sufficient as the linking function for our use case. In
more detail, in our scheme, addresses are encoded using arithmetic multi-residue
codes, and the data encoding can be selected arbitrarily. On the one hand, when
the same multi-residue code is also used for the data, e.g., an encoded pointer
is written to memory, using the XOR operation is a good choice, given that
multi-residue codes are not closed under the XOR operation. Subsequently, it
is also unlikely that combining multiple valid code words yields a valid result
and therefore facilitates error detection. On the other hand, even when a data
protection code that is closed under the XOR operation is used, still similar
error detection capabilities are expected. After all, combining code words from
different codes is highly unlikely to yield sensible results.

mem [p] = p⊕DReg (8.5)
DReg = p⊕ mem [p] (8.6)

Linking Granularity

Theoretically, the previously described linking approach can be applied with
arbitrary granularity. Therefore, applying the technique to the processor’s native
word size, e.g., 64-bit in our prototype, may appear natural. However, performing
XOR-based linking on such a coarse granularity does not yield the desired amount
of diffusion. Namely, bytes that are close to each other, i.e., with a stride of 8
bytes when operating on 64-bit, are highly likely to have the same address pad.
Furthermore, in many real-world applications, also misaligned data accesses with
arbitrary sizes have to be supported efficiently. Situations like this, for example,
commonly arise when arbitrarily aligned data is copied via the memcpy function.

8.4. Evolved Memory Access Protection 132

d0d7 d6 d5 d4 d3 d2 d1

. . .p7,

0

p0,

0

Xor-reduced
pointer p7

Xor-reduced
pointer p0

Figure 8.3: Byte-wise data linking of a 64-bit word. Each byte gets XORed with its
respective XOR-reduced encoded address.

Therefore, to fix the problem of the low diffusion and the arbitrarily aligned
data accesses, we perform the linking of data and address with byte-wise granular-
ity. Each byte, even when it is part of a larger memory transfer, is independently
linked with its respective address. Hereby, each individual byte-address pointer
is still multi-residue encoded to provide the desired diffusion during linking.
Furthermore, the actual linking is again performed via an XOR similar to Equa-
tion (8.5). However, considering that the data and its address have different
bit sizes, an additional compression is applied on the address before linking.
Namely, each 64-bit address p = [p0, p1, . . . , p7] gets reduced to one byte value p′

by XORing the individual address bytes as shown in Equation (8.7).

p′ =
7⊕

i=0
pi (8.7)

Applying this approach to a full 64-bit word is visualized in Figure 8.3.
Considering the number of needed multi-residue operations for such a word-sized
access, using this linking scheme effectively requires hardware support. In this
work, we integrated the needed transformations directly into special load and
store instructions. From the software perspective, encoding data when storing to
memory and decoding data when loading from memory is completely transparent
and can be performed for next to every memory access.

8.4.3 Memory-Mapped I/O
Memory-Mapped I/O (MMIO) is a common communication interface in embedded
processors to access peripherals. In MMIO, the peripheral registers are mapped
into the standard memory layout of the processor. This allows the processor to
use ordinary load and store instructions to access the peripheral.

However, in order to protect the memory access, our architecture uses redun-
dant pointers and links them with the data before executing the memory access.
Since a standard memory-mapped peripheral is not aware of this data linking,
wrong data would be written to the device. Therefore, we cannot apply data

8.5. Architecture 133

linking when accessing a memory-mapped peripheral. However, we still can use
an encoded pointer to access the memory-mapped peripheral, as this does not
influence the data. In order to use an encoded pointer but not perform the data
linking, we would need special instructions for load and store for this purpose.
We avoid this overhead by encoding this information directly into the encoded
pointer. The load and store instructions detect this and do not perform the data
linking accordingly.

As shown in Section 8.3, we redundantly encode the pointer using a multi-
residue code. In Figure 8.2, we show the pointer layout where the 41st MMIO-bit
indicates whether the pointer is for an MMIO access without data linking. The
residues, which form the redundancy of the pointer, are computed over the 40-bit
functional pointer value and the MMIO-bit to protect both against tampering.

8.5 Architecture
The concept of protected pointers and linked memory accesses is integrated into
a prototype implementation based on a 64-bit RISC-V architecture. In this
section, we first discuss the new instructions, show how we integrated them into
the architecture, and finally show a compiler prototype to automatically protect
all memory accesses in a program.

8.5.1 New Instructions
As previously described, it requires hardware support to efficiently perform the
residue arithmetic such that the performance penalty is acceptable. In this work,
we extend the instruction set of the processor with instructions that operate in
the encoded residue domain. In particular, the following custom instructions are
added to the instruction set.

renc, rdec. To efficiently encode a value into the multi-residue domain, a
dedicated encoding instruction (renc) is added. The encoding operation computes
the residues over the 41-bit functional value of the pointer, which also includes the
MMIO-bit in the protection domain. As a second instruction, we add support to
decode a multi-residue encoded register (rdec). Both instructions are idempotent,
meaning they can repeatedly be executed (encoding an already encoded value
does not change the encoding).

radd, raddi, rsub. To support pointer arithmetic on encoded pointers, hard-
ware support for the most commonly used operations is added. Concretely,
we support adding two multi-residue encoded register values (radd), adding a
multi-residue encoded value to an immediate value (raddi), and subtracting multi-
residue encoded values (rsub). The immediate value in the raddi instruction is
not yet multi-residue encoded. However, these values are part of the instruction
encoding and are already protected via the CFI code protection scheme. Note

8.5. Architecture 134

that before the immediate can be used in a residue operation, it gets encoded as
part of the instruction execution.

rlxck, rsxck. Since we now use encoded pointers and require data linking/un-
linking, dedicated memory instructions are added to the ISA. Therefore, a family
of new load (rlxck) and store (rsxck) instructions is added. Herby, the x denotes
the access granularity of the memory operation. Concretely, we support byte
(b), half-word (h), word (w), and double-word (d) accesses with and without
sign extension, which corresponds to the original memory access instructions in
the RISC-V 64-bit ISA. The new instructions have the same operand interface
as the original load and store instructions of RISC-V. However, they now take
an encoded pointer for addressing the memory. The memory instructions also
contain a plain immediate value to add an offset to the pointer, which is protected
by the CFI code protection. Furthermore, these instructions perform the data
linking and unlinking on a byte-wise granularity. However, if the 40th-bit, the
MMIO bit, is set to one, no data linking and unlinking is performed. This
approach allows us to use a protected pointer when accessing a memory location
that does not support data linking, e.g., a memory-mapped peripheral.

Since every memory access is replaced with its protected counterpart, the
protection mechanism could already be implemented in the original load and
store instructions of the processor. However, for the sake of still supporting the
original RISC-V instructions, they are left unmodified, and new instructions are
added separately.

8.5.2 Hardware
The instruction set is only one part of our protected architecture. We also
implemented the modified instruction set in hardware. As a foundation, we
use the open-source 32-bit RISC-V core RI5CY [PULb], which was meanwhile
renamed to CV32E40P [Ope23a]. This core is extended to a 64-bit processor
meaning that the register file, datapath, and load-and-store unit are modified,
and all necessary instructions are added to be compliant with the RISC-V
RV64IM instruction set. Furthermore, we added new instructions to deal with
multi-residue encoded pointers, as defined in Section 8.5.1. Figure 8.4 shows
the modified processor pipeline, which includes a dedicated ALU for residue
operations. Furthermore, immediate values, which are part of the instruction,
get encoded during the instruction decode stage of the processor pipeline. The
load-and-store unit is extended to support data linking and unlinking to protect
all memory accesses.

The new residue ALU is shown in detail in Figure 8.5. The ALU supports
encoding and decoding of values to/from the multi-residue domain as well as
adding and subtracting two encoded values. The design of the ALU is optimized
to require only one residue adder and one encoder in the execution stage of the
processor. Decoding is free since it only requires rewiring, where the upper bits
are set to zero. After performing an addition, the functional value of the adder

8.5. Architecture 135

PtrReduce
ResALU

ResEnc

Figure 8.4: Modified processor pipeline. The instruction decode stage is extended
with a 12-bit residue encoder, the execution stage with a residue ALU,
and the write-back stage with a pointer-reduction data-linking unit.

result is re-encoded and compared with the independently computed residues in
order to perform error-checking after each residue instruction. If the computed
residues and the newly re-encoded residues mismatch, a redundant error signal
is generated to force the processor into a safe state. Since this adder is also used
for computing the final pointer address during a memory access (the encoded
immediate value is added to the encoded base pointer), every pointer is also
checked before performing a memory access. With frequent checks for every
result, we minimize the probability that error masking occurs and errors are not
detectable anymore.

Currently, the residue encoder uses special algorithms from [PB09] to encode
data. However, the residue adder is implemented without any further optimiza-
tions. By using optimized arithmetic operations, e.g., the one from [Zim], the
hardware overhead can be further reduced.

8.5.3 Software
To make the countermeasure practical and protect every memory access in the
program, the new instructions and the protection mechanism also need to be
integrated into the compiler. In the following, we integrate our countermeasure
into the LLVM-based C compiler [LA04].

An LLVM-based compiler is partitioned into three parts, the front end,
the middle end, and the back end. While the middle end optimizes target-
independently on an intermediate code representation, the back end transforms
the universal intermediate representation to a target-dependent code. To protect
every memory access in the program, the countermeasure needs to be inserted in
the back end stage of the compiler. Any earlier transformation can potentially
miss a memory access leaving some accesses possibly unprotected (e.g., the stack

8.5. Architecture 136

Mod
Reduce

Res
Encode

Cmp
rs2
64

41

23

rs1

rs1

isRenc
isRenc

41

23

ResError

5

ResALU

Figure 8.5: Residue ALU with a 41-bit adder and a shared residue encoder. The
addition result is automatically checked after the operation by re-encoding
the result and comparing it with the computed residues and generating a
redundant error signal.

is created in the target-dependent part of the back end). Even in the back end,
the protection happens right before the final instruction scheduling.

LLVM’s back end uses a Directed Acyclic Graph (DAG) representation, the
Selection DAG, for the code generation. The intermediate representation is
transformed in a series of steps to finally emit the machine code. However,
the back end has no information about pointers and addresses. Therefore,
this information is created and propagated manually on the Selection DAG.
Dedicated pointer nodes are added to the Selection DAG where pointers are
created, e.g., when creating a FrameIndex node used for a local stack memory
access. This information is then propagated on the Selection DAG, and all
dependent operations are replaced with their corresponding residue counterpart.
If we obtain an instruction, which is not supported by the residue code, the
pointer is decoded, the operation is performed in the unencoded domain, and
then, the pointer is re-encoded. However, this sequence of instructions is not
used in the majority of the transformations. Finally, protected load and store
instructions are emitted, which use an encoded pointer for addressing the memory.

If the program uses a constant address, e.g., the address of a global variable,
this information needs to be encoded to the multi-residue domain. However, the
compiler does not have this information yet. Therefore, it creates a relocation such
that the linker can fill in the correct address information. Since this information
requires multi-residue encoding, the linker is also modified. In our work, we
use a custom RISC-V back end of LLVM’s lld linker. In addition to resolving
regular relocations, our linker also applies multi-residual encoding to pointers in
the binary. This includes pointers synthesized in code as well as pointers stored
in the memory, which additionally get linked with address information. Similar
to that, data stored in the read-only section of the binary is also linked with
its address. As soon as these values are loaded into a register, the unlinking
operation is performed, and the correct value is restored.

8.6. Evaluation 137

8.6 Evaluation
In order to make a countermeasure usable in practice, the overhead must be
reasonable. In this section, we first show the introduced hardware overhead
and then evaluate different benchmark applications on the target architecture.
Finally, we analyze the software overhead, discuss the overhead sources, and
describe future optimization possibilities.

To quantify the hardware overhead, we synthesize the hardware architecture
for a Xilinx Artix-7 series FPGA. By adding the new instructions, a dedicated
ALU for multi-residue operations, and a modified load-and-store unit, the re-
quired number of Lookup Tables (LUTs) increases by less than 5 %, and the
number of flip-flops increases by less than 1 %. However, this prototype design is
implemented without optimizations leaving space to improve the design further.

The custom LLVM toolchain based on LLVM 6.0 is used to compile different
benchmark applications for the RISC-V-based target architecture. The bench-
marks were taken from the PULPino repository [PULa], which were used to
originally evaluate the performance of the RI5CY core. Simulation is performed
using a cycle-accurate Hardware Description Language (HDL) simulation of the
target processor. As a baseline, we simulate the benchmark applications solely
with enabled CFI protection [Wer+18] but without an application-specific data
protection scheme. On top of that baseline, we determine the exclusive overhead
of our countermeasure in terms of code size and runtime.

As shown in Table 8.1, on overage, the code overhead is 10 %, and the runtime
overhead is less than 7 %. This is a comparable better performance to ANB-codes,
which have an average runtime overhead of 90 % compared to AN-codes solely to
provide memory access protection. Instead, our countermeasure has considerably
lower overheads, making it attractive for many real-world applications.

Table 8.1: Code and runtime overhead for different benchmark programs from an
HDL simulation.

Benchmark
Code Overhead Runtime Overhead

Baseline Overhead Baseline Overhead
[kB] [%] [kCycles] [%]

fir 4.26 8.54 39.22 6.35
fft 6.52 6.57 58.01 4.65

keccak 4.79 10.11 255.55 11.31
ipm 4.84 12.81 10.80 3.94

aes_cbc 7.25 8.77 60.91 9.10
conv2d 3.26 13.12 5.92 2.70

Average 9.99 6.34

8.7. Conclusion 138

8.6.1 Future Work
The overhead numbers are already competitive for practical usage, even for
a prototype implementation. Still, some improvements regarding code size or
performance have not been performed yet.

For example, pointer comparisons in the encoded domain are currently only
implemented for equal and not equal. Although seldomly used, comparisons with
other predicates are still performed on the functional value without the protection
of the residue code. Similarly, there are rare cases when pointer arithmetic uses
unsupported logical operations. In this case, the operations is performed only on
the functional value. Adding support for these operations would further increase
the protection domain.

Furthermore, our current toolchain has not been highly optimized for our
prototype architecture yet. We expect that, with a more optimized compiler,
even better results can be achieved in the future.

8.7 Conclusion
Memory accesses are frequently used operations, and many different security
policies, as well as safety mechanisms, rely on their correct execution. However,
when dealing with faults, a correctness of a memory access cannot be guaranteed.
While there are dedicated methods to protect the control-flow of a program
and to protect the data in memory and registers, there is no efficient protection
mechanism to protect the memory access against address tampering.

In this chapter, we closed this gap and presented a new mechanism to protect
memory accesses inside a program. The countermeasure is employed in two steps.
First, all pointers, including pointer arithmetic, are protected by employing a
multi-residue code. The redundancy is hereby directly stored inside the unused
upper bits of the pointer, which does not add any memory overhead. The second
step links the redundant pointer with the data. Subsequently, addressing errors
manifest as data errors and get detectable as soon the data is loaded into the
register. This linking approach is universally applicable and can be used on top
of any data protection scheme.

To demonstrate the practicability of our countermeasure, we integrated the
concept of protected memory accesses into a RISC-V processor. We extended
the instruction set to deal with multi-residue encoded pointers and added new
memory operations which perform the linking and unlinking step. Furthermore,
we extended the LLVM compiler to automatically transform all pointers of a
program to the encoded domain. Our evaluation showed an average code overhead
of 10 % and an average runtime overhead of less than 7 %, which makes this
countermeasure practical for real-life applications.

Our design provides a first step towards the efficient protection of memory
accesses against fault attacks. By using a hardware-software co-design, we are
able to efficiently protect pointer arithmetic and direct memory accesses against
faults. This work targets embedded use cases where the processor does not

8.7. Conclusion 139

contain a Memory-Management Unit (MMU) and only performs direct memory
accesses. However, since the complexity of devices is increasing and nowadays,
systems are often based on application-class processors, there is a gap. Memory
accesses coming from the virtual domain and supporting shared memory accesses
are not yet supported. In Chapter 9, we extend the scope of protection and solve
these challenges.

9
Protected Memory Accesses in the Virtual

Memory Domain

In Chapter 8, we discussed a protection scheme to arbitrarily protect memory
accesses of bare-metal applications against fault attacks. However, Internet-of-
Things (IoT) nodes emerged in the last decade from small microcontrollers to
more powerful application-class processors running commodity Operating Systems
(OSs). These systems use a Memory-Management Unit (MMU) to implement
virtual memory and efficiently isolate the memory of different programs. In virtual
memory architectures, the concept of shared memory is used to provide inter-
process communication via the memory subsystem. However, shared memory
limits the use of the protection scheme from Chapter 8 for application-class
processors, as it is designed for bare-metal applications only. Unfortunately,
even on larger application-class or commodity desktop processors, fault attacks
on the virtual memory systems are exploited to gain kernel privileges [Goo15;
Tro+21]. Consequently, new and efficient mechanisms are required to protect
larger applications with arbitrary memory accesses from the virtual memory
domain.

Contribution
In this chapter, we present SecWalk, an efficient countermeasure to protect virtual
memory accesses against fault attacks. Our approach allows us to protect all
memory accesses of a program against fault attacks, even for large application-
class processors. This work closes an open gap and protects the page table walk
against fault attacks by linking the redundancy properties of virtual addresses to
physical addresses. We built upon the protection scheme of Chapter 8, where we

140

141

encode pointers and addresses in the virtual memory domain using a multi-residue
code. The proposed secure page table walk uses the redundancy of a pointer
to securely translate the virtual address to an encoded and protected physical
address. We exploit the arithmetic properties of encoded pointers to retrieve the
correct page table entries during the address translation. The translated encoded
physical address is then used to perform the actual secure memory access. This
mechanism allows us to support all common memory allocations, such as dynamic
or shared memory.

To evaluate the design, we integrate SecWalk into a hardware implementation
of an open-source RISC-V processor. The evaluation of our prototype implemen-
tation shows that the hardware overhead increases the size of the processor design
by less than 0.5 % in terms of flip-flops and 10 % in terms of lookup tables. To
evaluate the software overhead, we develop a custom LLVM-based toolchain to
automatically instrument programs with SecWalk. On a set of microbenchmarks,
SecWalk yields an average code overhead of 11.05 % and an average runtime
overhead of 7.17 %. To showcase the applicability to larger programs, we inte-
grate SecWalk to the commodity microkernel seL4 and automatically protect all
memory accesses of the kernel and user threads (virtual and physical accesses)
against fault attacks. Instrumenting all pointer arithmetic and every memory
access increases the code size by 13.1 % and the runtime overhead by 11.6 %.

Summarized, our contributions are:

• We propose SecWalk, a generic method to protect the page table walk
against fault attacks. Combined with encoded pointers and pointer arith-
metic, we protect all memory accesses of a program against fault attacks.

• We integrate SecWalk to the open-source RISC-V processor CVA6 and
evaluate its overhead based on a Field Programmable Gate Array (FPGA)
implementation.

• To automatically protect arbitrary programs with SecWalk without user
interaction, we develop a custom LLVM-based toolchain.

• To evaluate the software overhead and to show the practicability, we evaluate
SecWalk on a set of microbenchmarks we port the microkernel seL4. We
automatically replace all pointers, addresses, and memory accesses with
their protected counterparts using our toolchain.

9.1. Page-based Virtual Memory 142

Scientific Contribution

Chapter 9 is primarily based on the following publication that was pre-
sented at the HOST 2021 in Washington D.C. (Washington D.C, USA).

Robert Schilling, Pascal Nasahl, Stefan Weiglhofer, and Stefan Mangard.
“SecWalk: Protecting Page Table Walks Against Fault Attacks.” In:
IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2021, Tysons Corner, VA, USA, December 12-15, 2021. IEEE,
2021, pp. 56–67. doi: 10.1109/HOST49136.2021.9702269

I am the main author of this paper, developed the technical idea, im-
plemented the prototype toolchain, and performed all experiments and
evaluations. Pascal Nasahl contributed to the text of this paper. Stefan
Weiglhofer contributed to the prototype RISC-V hardware implementa-
tion. Stefan Mangard supported this work in many discussions and gave
feedback on the paper.

Outline
The remainder of this chapter is structured as follows. Section 9.1 introduces
page-based virtual memory. Section 9.2.1 discusses the threat model and existing
fault attacks on virtual memory. Section 9.3 presents SecWalk, an efficient
mechanism to protect virtual memory accesses against fault attacks. Section 9.4
describes the prototype implementation of SecWalk based on a RISC-V processor
and discusses the toolchain, and in Section 9.5, we evaluate the performance of
the implementation. Section 9.6 discusses related work and shows how SecWalk
is superior. Finally, Section 9.7 concludes this chapter.

9.1 Page-based Virtual Memory
Page-based virtual memory [Lav78] or paging, is a well-known and widely used
architecture to decouple the physical memory layout from the application and OS.
A Memory-Management Unit (MMU) decouples the virtual address space from
the constraint physical address space. The memory of a program is fragmented
into smaller, fixed-size pages. The operating system creates a mapping between
pages in the virtual address space and the pages in the physical address space.
These mappings, i.e., the Page Table Entries (PTEs), are stored in the page
tables located in the page directory in the main memory. When running the
program, the MMU uses the page tables to translate a virtual address to a
physical address, called the page table walk. The physical address is eventually
used for the actual memory access. As this translation is expensive, modern
processors have a small cache in the MMU for storing the most recent translations,
i.e., the translation Translation Look-Aside Buffer (TLB), to have faster access
to the physical address.

https://doi.org/10.1109/HOST49136.2021.9702269

9.2. Threat Model and Attack Scenario 143

Apart from managing the memory, paging also provides isolation between
different user-space applications. Since the OS sets up a different paging structure
for every user-space process, thus every process can only see its own memory.
Consequently, paging provides isolation between different user-space processes.
However, the OS can still provide a memory-based communication interface
between different processes, i.e., it provides shared memory. Here, the same
physical memory is mapped into the virtual memory space of two or more
processes.

9.2 Threat Model and Attack Scenario
This section first presents the threat model and then shows how existing attacks
in this threat model hijack virtual memory accesses. Finally, we discuss the
required properties for protected memory accesses in the virtual memory domain.

9.2.1 Threat Model
In this work, we consider a powerful attacker capable of inducing faults with
the goal of redirecting a virtual memory access. Thereby, we extend the threat
model from Section 8.2 for application-class processors. The attacker aims to
hijack the memory access by attacking the register file where a pointer is stored,
pointer arithmetic, the memory access itself, or by manipulating the translation
between the virtual and physical address. Consequently, we include the MMU,
the TLB, and PTEs stored in memory to the threat model. Furthermore, we
assume that the payload data of the application in memory is protected with a
data encoding scheme.

Note that fault attacks on other parts of the processor, e.g., the instruction
pipeline, the instruction pointer, the actual computation, or on other data, are
not in the scope of this work. It requires orthogonal countermeasures, e.g., a
Control-Flow Integrity (CFI) protection scheme such as FIPAC from Chapter 5 in
combination with the conditional protection from Chapter 7 or hardware-enforced
CFI tailored to fault attacks [Cle+16; Wer+18], which ensures the authentic
and genuine execution of the instruction stream and its control-flow graph. The
computation can either be protected with instruction replication or by using a
data encoding scheme that supports encoded arithmetic operations. For complete
protection against fault attacks, a combination of the protection of memory
accesses such as SecWalk, the control-flow, and the computation is required. We
now show how faults are used to hijack memory accesses in the virtual memory
domain.

9.2.2 Faults on Virtual Memory
When dealing with larger application-class processors with virtual memory and
MMUs, no efficient protection mechanism exists, leaving virtual memory accesses
vulnerable to fault attacks. Especially, the page table walk, which translates a

9.2. Threat Model and Attack Scenario 144

VA

Page Table
 Walk

PA

PAF False

True

Memory

Figure 9.1: Attack vector: A faulted page table translation leads to a wrong memory
access.

virtual to a physical address, is prone to fault attacks, which eventually leads to
wrong memory accesses. Figure 9.1 illustrates the unprotected page table walk
leading to a wrong address translation due to a fault. The virtual address VA
is translated to a physical address PA during the page table walk. A precise
fault in this page table translation can redirect the page table walk to return a
different physical address PAF , thus redirecting the subsequent memory access to
a different location. This attack vector exists even if virtual or physical addresses
include redundancy mechanisms such as data encoding. There is no efficient
way of protecting the page table walk, and thus, memory accesses from the
virtual domain against fault attacks. Similarly to that, also the MMU internal
optimization buffer, i.e., the TLB, suffers from the same attack vector. A fault
can redirect the TLB to return a different and wrong page table entry, thus,
redirecting a memory access to a wrong location.

Such an attack is presented in [Tro+21], where they use electromagnetic
fault injection to induce faults to the MMU of a System-on-Chip (SoC). In their
experiments, they are able to fault the virtual to physical mapping, therefore,
redirecting the memory access to a different location.

[Goo15] describes a kernel privilege escalation, where the Rowhammer effect
is used to manipulate the PTE stored in memory. By inducing faults to the
PTE, the attacker is able to redirect the virtual to physical mapping of an
attacker-controlled page. Eventually, this results in having read and write access
to the attacker process’s own page tables, yielding access to all physical memory
and allowing the attacker to escalate privileges.

9.2.3 Requirements for Protected Virtual Memory Ac-
cesses

To protect memory accesses in the virtual memory domain against fault attacks
with an easy application and to mitigate attacks, as discussed above, a protection
scheme needs to fulfill the following requirements.

1. Pointers and addresses require an efficient protection mechanism against
fault attacks, which also covers pointer arithmetic.

9.3. Design of SecWalk 145

2. A link between the accessed data and the protected memory address is
required to ensure the correct memory element was accessed.

3. In order to protect the virtual memory domain, the translation between
virtual and physical addresses, including the TLB, must propagate the
address redundancy.

4. To support arbitrary applications, the protection mechanism of virtual
memory must support shared memory. Therefore, any linking between
payload data and addresses must only operate on physical addresses.

5. To support legacy codebases and to enable easy deployment, the memory
protection must be applied automatically, i.e., during compilation, and
must not require source code modifications.

Existing protection mechanisms for memory accesses are either not effi-
cient [Sch+10] or, like the countermeasure presented in Chapter 8, do not support
the protection of virtual and shared memory. Hence, there is a need for new and
efficient protection schemes, protecting all memory accesses against fault attacks.

9.3 Design of SecWalk
This section presents SecWalk, an efficient protection scheme against fault attacks
for all memory accesses in the virtual and physical memory domain, fulfilling
the key requirements discussed above. We first introduce the design of protected
pointers and then discuss the protected page table walk and TLB protection
needed for virtual and shared memory.

9.3.1 Protected Pointers and Memory Accesses
Residual codes have been proven to be an efficient countermeasure to protect
arithmetic operations against fault attacks. These codes can also be used to
protect pointers and their respective pointer arithmetic. Similar to the protection
mechanism for direct memory accesses, as presented in Chapter 8, we embed the
redundancy of the residue code in the upper bits of the pointer by reducing its
address space.

Our design uses the moduli set M = {5, 7, 17, 31, 127} to protect pointers and
addresses, which yields a Hamming distance of D = 5, capable of detecting up to
four bitflips. Figure 9.2 shows a virtual memory address, where the upper bits
denote the residue redundancy and the lower 39-bits the original pointer value.
This separation – a residue-code is a systematic code – supports direct access
to the payload data without a dedicated decode operation, which is crucial for
a fast memory lookup on the unencoded address space. The address space of
the pointer is reduced to 39-bits allowing the pointer to store up to 25-bits for
redundancy purposes. The smaller address space aligns with existing systems
such as Linux [Ghi21] for RISC-V, which only uses 39-bits in its virtual address

9.3. Design of SecWalk 146

63
0

Redundancy VPN[2] VPN[1] VPN[0] PO
25 9 9 9 12

Figure 9.2: Encoded virtual address in Sv39. The upper 25-bits denote the redundancy
information of the multi-residue code.

space. To efficiently operate on encoded pointers, we add new instructions to
encode, decode, add, and subtract encoded pointers.

To protect the actual memory access, we establish a link between the encoded
address and the actual data in the memory access. The linking operation
scrambles the actual data when being written to memory and unscrambles it
when reading it back using its encoded address information. We use a simple
XOR-based link on byte granularity, where each encoded byte address scrambles
the corresponding byte in the data. Only when reading from the correct memory
location, the unscramble operation succeeds, and the correct data is loaded into
the register of the processor. As the payload data uses a data encoding scheme,
the unlink operation of a wrong memory access destroys the payload’s redundancy
properties. Thus, the wrong access is detectable in software.

9.3.2 Secure Page Table Walk
In order to protect the memory access in the virtual memory domain, it is
required to provide a link between the virtual address and its translated physical
address. To protect the actual memory access itself on the physical memory
domain, an address-dependent link to the data is needed, which is applied during
the page table walk.

The page table walk is the main operation to translate a virtual address to a
physical address, which is eventually used for the memory access. In a protected
program, all addresses, virtual and physical ones, are protected using the residual-
based encoding scheme as described before. We now present the secure page
table walk that translates a protected virtual address to a protected physical
address and establishes a protected link in between. The design focuses on the
RISC-V Sv39 virtual memory system [Wat+20], but the protection mechanism
itself is generic and can also be applied to other virtual memory architectures.

In Sv39, a 39-bit virtual address is grouped into a 27-bit Virtual Page Number
(VPN) and a 12-bit Page Offset (PO). During the three-step deep page table walk
(the page table walk may abort early for larger pages), the VPN is translated
to a 44-bit Physical Page number (PPN). The page offset remains untranslated.
The final physical address is computed by concatenating the retrieved PPN with
the page offset, forming a 64-bit address for the memory access. In Figure 9.2,
we show the layout of a virtual address. Note that the upper bits of the address
are used to store the redundancy information of the multi-residue code of the
virtual address.

9.3. Design of SecWalk 147

Figure 9.3: Sv39 page table entry with the extended encoded PPN to store the
redundancy information.

To achieve a secure page table walk, we need to establish a link between
the protected virtual address and the translated physical address. Only when
performing the correct page table walk this link can be verified, and the page
table walk is genuine. The verification is done by checking the integrity of
the encoded PPN in the page table entry after applying the respective unlink
operation. Otherwise, the translation yields an invalid PPN in terms of the
encoding scheme. Due to the redundancy properties of the encoding scheme, the
invalid PPN can be detected. However, the link, which is based on the virtual
address, must not influence the actual physical address nor the data stored in
the memory. This property is needed to support shared memory, where different
virtual addresses map to the same physical address and data.

To design a protected link between the virtual and physical address of the
page table walk and to make faults detectable, we add redundancy to a page
table entry. We encode the PPN within the PTE using the same multi-residue
code as used for pointers. We extend the size of the PPN by 8-bits to a total
size of 52-bit, to include the redundancy information of the multi-residue code.
Together with the 12-bit page offset, this forms a 64-bit physical address. Since
the PPN is aligned to the page size of 4 KiB or larger, the lower 12-bits of
the physical address pointed by the PPN are always zero. Eventually, PPN ×
212 forms a valid code word in terms of the multi-residue code, which can be
verified. In Figure 9.3, we show the modified PTE, including the redundancy
of the encoded PPN that we use to verify the correct translation. By including
25-bits of redundancy in the physical page number, we also reduce the physical
address space to 39-bits.

The page table walk subsequently reads new page table entries, based on
the VPN of the virtual address, from memory to determine the final physical
address. In SecWalk, the PTEs are linked with the corresponding part of the
VPN. Before using the PTE, it needs to be unlinked, followed by the verification
of the residual integrity of the encoded PPN. If this check succeeds, the correct
PTE was loaded from memory, and no wrong lookup was performed. If the check
fails, it corresponds to an invalid memory read of the PTE or a manipulation of
the PTE in memory. These steps, i.e., the page table walk, are repeated until the
final PTE is successfully loaded and the last encoded PPN is obtained. The last
PPN itself is linked a second time with the fully encoded VPN, thus providing
an end-to-end link between the encoded VPN and PPN. Finally, the physical
address is computed by taking the encoded PPN and performing an encoded

9.3. Design of SecWalk 148

R VPN2 VPN1 VPN0 PO

Page Directory

satp.ppn
enc

pte.ppn
enc

pte.ppn
enc

1st level translation 2nd level translation 3rd level translation

VA
enc

PA
enc

Memory

V
P

N
en

c

 Unlink Unlink Unlink

Unlink

Figure 9.4: Secure page table walk with linked page table entries.

addition with the encoded page offset.
We achieve the link by applying a special linking function Px to the PTEs

during the page setup. During the page table walk, we apply the respective
inverse unlink operation P −1

x . Note that x denotes the bitwidth on which the
linking is applied, which is 64-bit for linking the PTE. The final 52-bit encoded
PPN in the last-level PTE is linked twice with a linking function where x = 52.
This last step is needed to also incorporate the residual redundancy of VPNenc

to the page table walk. As soon as the page table walk is faulted and a wrong
PTE is loaded, the unlinking step destroys the data such that the redundancy
verification fails, which eventually causes a trap in the processor. Here, a fault
during the address translation is transformed into a data error on the PTE, which
is detectable due to its redundancy properties.

In RISC-V, the page table walk starts with a base register storing the initial
physical page number. Similar to PPNs within a PTE, we also encode the initial
PPN to the multi-residue domain stored within the Control and Status Register
(CSR) satp_enc.ppnenc. Note that we require a new CSR for this purpose to fit
in the extended encoded PPN. Based on the original page table walk, as defined
in the RISC-V privileged specification, we propose the following sequence of
steps for the secure page table walk. The protected translation of the encoded
virtual address VAenc to the encoded physical address PAenc works as follows.
The suffix enc denotes multi-residue encoded data, ⊞ the encoded addition, and
⊟ an encoded subtraction. For Sv39, PAGE_SIZE is 212, and PTE_SIZE is 8.

1. Let a be satp_enc.ppnenc × PAGE_SIZE and i = 2.

2. Let VPNenc = VAenc ⊟ Enc(PO), where PO is the 12-bit page offset of
the virtual address. Verify the lower 12-bit of VPNenc to be zero.

3. Let the linked PTEl be the value of the linked PTE at address a ⊞ VA.vpn[i]
× PTE_SIZE.

4. Perform the unlink step: PTE = P −1
64 (PTEl, VA.vpn[i]).

9.3. Design of SecWalk 149

5. If PTE.r = 1 or PTE.x = 1, we have a leaf PTE. Go to step 7.

6. The PTE is a pointer to the next level of the page table. Check the integrity
the residue integrity of
PTE.ppnenc × PAGE_SIZE. Fail if not valid. Let a be PTE.ppnenc ×
PAGE_SIZE and i = i− 1. If i < 0, fail out. Continue at step 3.

7. A leaf PTE was found. Perform the second unlink operation of the PPN
by PTE.ppnenc = P −1

52 (PTE.ppn × PAGE_SIZE, VPNenc) and check the
residual integrity of PTE.ppnenc. Fail if not valid.

8. The page table translation finished. The translated encoded physical
address is given as
PAenc = PTE.ppnenc ⊞ POenc.

Note that original physical memory access and Physical Memory Protection
(PMP) checks of RISC-V during the address translation are still in place. The
page table walk returns an encoded physical address, which is then used for the
linked memory access. In Figure 9.4, we visualize the page table walk using the
steps as described before.

Linking Function

The general idea of the secure page table walk uses a linking function Px(y, k) to
link the PTE with its corresponding parts of VPN. This link is performed on the
whole PTE and in the last step only on the encoded PPN, thus requiring two
different block sizes (52- and 64-bit). In the linking function, x denotes the block
size, y is the data being linked, and k is the linking key.

To make the link secure but also practical, the un/linking function needs to
fulfill three requirements.

1. The linking function Px(y, k) needs to be a bijective mapping, implying
that there exists an inverse unlinking function P −1

x (y, k) such that y =
P −1

x (Px (y, k) , k). During the page directory setup, the PTE gets linked
using its corresponding part of the VPN as the linking key k. When
performing the page table walk, the respective unlink operation is applied
to retrieve the correct PTE data again.

2. The unlinking function is used to detect wrong page table walks by verifying
the redundancy of the unlinked PTE. Thus, the unlinking function must
not yield a correct code word in terms of the data encoding scheme if the
wrong data is accessed.

3. Third, the linking function needs to provide diffusion over the whole data
word, e.g., over the 64-bit PTE when x = 64. The diffusion is needed to mix
all bits of the PTE, i.e., the status bits and the PPN. Thus, an arbitrary
fault on the PTE, even only on a status bit, also affects the redundancy
bits of the encoded PPN. Therefore, a simple byte-granular XOR-based

9.3. Design of SecWalk 150

linking function, such as the one used in Section 8.4.2, is not sufficient as
there is no intra-word diffusion.

Many functions fulfill these requirements, but we aim for a small and efficient
design in this work. We use a two-round reduced version of the PRINCE block
cipher [Bor+12] to perform a 64-bit link, meeting the requirements discussed
above. A round-reduced version of PRINCE is sufficient as the linking function
only requires diffusion and no cryptographic strength. The second linking function
aslo uses a two-round reduced version of PRINCE but with a reduced block size
to 52-bit. The encryption operation of the cipher performs the linking operation,
and the decryption operation performs the unlinking step, respectively.

In order to protect the page table walk, we apply the principle of linking and
unlinking again, but between different levels of the page table walk. However, the
linking is not applied on byte-level but on 64-bit word-level to ensure diffusion
over the full page table entry.

9.3.3 TLB Design
The translation between virtual and physical addresses is a complex multi-step
process, including multiple memory accesses under the hood. Modern processors
have a dedicated cache for storing the most recent translations to speed up
this operation, i.e., the translation TLB. This buffer stores the most recent
translations between virtual and physical addresses to avoid a costly MMU
translation. The TLB is indexed using the VPN of the virtual address and
returns the corresponding PTE if available. We apply the same 64-bit linking
mechanism to secure this translation as used in the page table walk. The PTE
in the TLB is linked using the encoded VPNenc of the virtual address. When
retrieving a PTE from the TLB, the PTE is unlinked, and the redundancy of
the included PPN is verified. Only when using the correct encoded VPNenc for
unlinking the redundancy properties of the encoded PPN are preserved, and the
lookup is valid. Otherwise, if the wrong or faulted VPN is used for unlinking,
the redundancy properties of the encoded PPN are destroyed. In this case, the
MMU traps and stops the application.

9.3.4 Page Directory Setup
When setting up virtual memory, it is necessary to create the corresponding
mappings between virtual and physical addresses, i.e., the page directory. This
configuration is a manual task and is typically performed in software when the
OS initializes a new process or a process asks for more memory. As discussed in
Section 9.3.2, the different levels of the page table are linked using parts of the
VPN as the linking key with a final link of the whole encoded VPN at the end.
It is the page directory setup’s responsibility to create these links.

There are different approaches possible for establishing these links. While
creating this link can purely be done in software, we aim for a hardware-centric
approach since the linking functionality is needed anyways for the TLB. We

9.4. Implementation 151

ID EX

Decoder

Compressed
Decoder

Is
su

e

Regfile
Read

LSU

Multiplier

CSR
Write

Regfile
Write

Sc
or

eb
oa

rd

commit

Commit

DTLB

PTW

E
P
C

C

A
U

S
E

 V

Instruction Queue

Mispredict

to
 c

ac
he

 c
on

tr
ol

le
r

tim
er

ex
te

rn
al

 in
te

rr
up

t u
ni

t

Branch

Controller

In-order
Architechtural
Commit

in
te

rr
up

t

Backend

In-order Issue OoO WB

fr
o
m

 D
e
co

d
e
r

Issue

Scoreboard

E
P
C

C

A
U

S
E

 V

Re-
aligner

Privilege Check

Exception

CSR Buffer

Branch Unit

Frontend

PC
Select

4

npc

epc
mtvec

epc

Speculative Regime

Frontend

fr
om

 M
M

U

I$

In
st

r S
ca

n

instr

32

branch?

call/ret?

taken?

imm

PC

ITLB

CSR
Write

BHT

BTB

RAS

D$

ALU

Res Enc

Res ALU

Ptr Reduce

Res PTW

satp_enc

satp_enc

Figure 9.5: CVA6 hardware architecture with SecWalk. The yellow parts indicate
changes in the design.

add a new instruction vpnlink1 rd, rs1, rs2, which creates the 64-bit link
between the layers of the page tables. Furthermore, we add a second instruction
vpnlink2 rd, rs1, rs2, which creates the final 52-bit link for the last PPN.
These two instructions implement the linking functionality, as described above,
and reuse already existing hardware blocks. While the speed might not be a
requirement for the page table setup, i.e., this is not an often used operation, the
page table walk, which uses the inverse operation of the link, needs to be fast.

9.3.5 Shared Memory Support
SecWalk natively supports shared memory. By not having a hard link between
the virtual address and the data in memory, a process can map the same physical
page to multiple virtual addresses. Similarly, multiple processes can map the
same physical page in their address space to allow inter-process communication.
Due to the design of the page table walk, shared memory does not require to
share any information between multiple mappings, as it is required for other
protection schemes in related work.

9.4 Implementation
In this section, we first describe the hardware architecture of SecWalk and then
discuss its custom toolchain to automatically instrument and protect arbitrary

9.4. Implementation 152

AGU

Load Unit

MMU
ITLB

DTLB

PTW

Store UnitStore Unit

Store Buffer

operator

operand A

immediate

vaddr

lsu_ctrl+

FSM

D$

1
 0

 2

FSM

LSU Bypass

Issue

FSM

Is
ss

ue

Re
su

lt
A
rb

ite
r

commit

R
e
s

A
LU res_data

res_agu_valid

1

0 P
rio

rity
 S

e
le

ct

XOR

Ptr
Reduce

XOR

XOR

Res
PTW

en_linking

paddr

Figure 9.6: Hardware architecture the load-store-unit of CVA6. The yellow parts
indicate changes in the design.

programs.

9.4.1 Hardware Implementation
We integrate SecWalk into the open-source RISC-V processor CVA6 [ZB19],
formerly known as Ariane. CVA6 is a 64-bit, application-class, 6-stage, single
issue, in-order RISC-V Central Processing Unit (CPU) written in SystemVerilog
capable of running operating systems. In Figure 9.5, we show the modified
hardware architecture of the processing system (the yellow parts indicate changes
or additions). To support new instruction to deal with encoded pointers, e.g.,
add, subtract, encode, or decode, we extend the decoder and add a dedicated
residue ALU. Furthermore, we add a CSR satp_enc to store the multi-residue
encoded base address of the page directory needed for the page table walker. To
support the linking operations needed for the page table setup, we add two new
instructions vpnlink1 and vpnlink2, to the decoder, which perform the 64-bit
and 52-bit linking operation based on a round-reduced implementation of the
PRINCE cipher.

In Figure 9.6, we show the modified Load-and-Store Unit (LSU) of the system.
The LSU adds a new XOR-unit to the load- and store-unit, which is responsible
for performing the linked memory address using the compressed encoded address
coming from the ptr-reduce module. Furthermore, the MMU adds the residue-
based page table walker, which transforms the encoded virtual address to the
encoded physical address used for memory access in the load- or store-unit. The
MMU has dedicated access to the memory to retrieve the page table entries
needed for the address translation.

As shown in Figure 9.6, we extend the MMU with a dedicated Residue

9.4. Implementation 153

M
M

U

state

op_a

op_b

op_a

op_b

Cmp

+
res

Res
Encode

VPN
UNLINK1

VPN
UNLINK2

P
T
W

 /
 M

M
U

res_fault

52

52

24

64

64

result

Res
Encode

24

FSM

PTW VA.vpn[i]_enc

VPN_enc

64

64

64

3

64

64

Cmp
0

12

12

decoded_rdata

decoded_pterdata_xorcorr

Figure 9.7: Residue page table walker exploiting the redundancy properties of residue
codes.

Page Table Walker (ResPTW), detailed in Figure 9.7. The residue Page Table
Walker (PTW) performs the additional operations needed by the existing PTW
and MMU to enable secure virtual memory accesses. The block diagram in
Figure 9.7 shows an overview of the implementation of the ResPTW, where it
receives its data from the PTW or MMU and provides the results to the same
two units. The original PTW, together with the residue PTW, performs the
multi-level address translation according to the design of SecWalk. When an
intermediate PTE is read, the 64-bit vpnunlink1 operation decodes the whole
PTE using the corresponding part of the V PN as the linking key. If a leaf PTE is
read, the residue PTE performs the final 52-bit vpnunlink2 operation to unlink
the encoded page number using VPNenc as the linking key. Both vpnunlink
operations are based on a round-reduced version of the PRINCE block cipher
with different block sizes. The final address is computed by adding the encoded
page offset to the final PPN from the leaf PTE. Note that a residue addition
is performed rather than a simple concatenation to yield an encoded physical
address, which can be used to access the memory.

If the TLB already contains the requested translation, the PTW is not
needed, and the MMU only requests the computation of PAenc. The vpnunlink
operations of the residue PTW are used to decode the accessed entry from the
TLB. Note that all residual operations, i.e., an addition, contain an integrated
check with respect to the redundancy bits. As soon as an invalid code word is
detected, the MMU traps, leading to aborting the program execution.

Although the prototype of SecWalk is based on the CVA6 processor, the
protection mechanism is generic. Thus, SecWalk is compatible with other 64-bit
RISC-V designs such as Rocket [Asa+16], (Sonic)Boom [CPA15; Zha+20], and
many others. The only hard requirement is being able to modify the core, i.e.,
having access to the source code. Furthermore, the protected page table walk
itself is generic; thus, it is also applicable to other architectures. For example, the

9.5. Evaluation 154

ARM AArch64 architecture supports a similar 39-bit addressing scheme, where
SecWalk can be added if core changes are possible.

9.4.2 Toolchain Implementation
To automatically compile arbitrary software for SecWalk, we develop a custom
toolchain based on the LLVM compiler [LA04]. In this work, we reuse a modified
toolchain from the protection scheme of Chapter 8 to encode pointers and pointer
arithmetic to the multi-residue domain and only use linked memory accesses. Note
that the toolchain currently does not support the automatic instrumentation of
inline assembly code. If a program uses inline assembly, it requires the developer
to manually modify the assembly code to use protected pointers and memory
accesses.

To run a protected program, it requires support from the operating system.
When starting a new application, the operating system takes care of setting
up the memory mappings of the process. This part of the program requires
a modification to take the linked page table entries into account. It needs to
incorporate vpnlink1 and vpnlink2 to set up the link such that the hardware
page table walker can unlink them when required. This task is a manual process
and is not covered by the LLVM-based toolchain.

9.5 Evaluation
In this section, we first provide an evaluation showcasing the overheads of
SecWalk in terms of hardware, code size, and runtime. We then discuss the
security properties and how it protects against the defined threat model.

9.5.1 Hardware Evaluation
To measure the hardware overhead, we synthesize the design for a Xilinx Kintex-7
series FPGA. Our evaluation shows the prototype implementation of SecWalk
increases the area of the design by less than 0.5 % in terms of flip-flops and 10 %
in terms of lookup tables. In Table 9.1, we further split the utilization of the
overheads between the handling of protected pointers and the changes related
to virtual address translation in the MMU. Note that the hardware changes of
SecWalk do not affect the critical path of CVA6, and the synthesis still reaches
the original target frequency of 50 MHz.

9.5.2 Performance Evaluation
To evaluate the performance of SecWalk, we measure the code and runtime
overhead of a set of microbenchmarks and then extend the evaluation to a micro-
kernel. We use the custom LLVM-based toolchain to automatically instrument
the programs and to transform all pointer arithmetic and memory instructions
to the protected domain. The startup code configures the MMU and maps the

9.5. Evaluation 155

ae
s

cc
fivar

str
in

g fft

kec
ca

k

sim
plea

dd
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

O
ve

rh
ea

d
[%

]

3.
15

7.
57 9.

41

5.
54

9.
53

7.
88.

7

17
.7

3

10
.2

5

6.
73

12
.7

3

10
.1

8

Runtime
Code

Figure 9.8: Performance evaluation using microbenchmarks.

virtual and physical pages accordingly. In Figure 9.8, we summarize the runtime
and code overhead for the microbenchmark suite. SecWalk adds an average
runtime overhead of 7.17 % and an average code size overhead of 11.05 %.

To showcase the applicability of our design for a larger application, we port the
formally verified microkernel seL4 [EKE08; Kle+09; Kle+10] to SecWalk, which
is used in many security-critical applications. seL4 already supports RISC-V but
still requires minor adoptions for our design. First, we shift the operating system’s
address space to fit into the modified address layout of encoded pointers with its
reduced address space. The instrumentation of the assembly code of seL4 requires
manual modification, but these changes are minimal. The most crucial change
in software is setting up the page tables using the custom linking instructions.
These instructions are used to create the link between the virtual and physical
addresses in the page directory, which are unlinked during the page table walk.
When compiling seL4 with the extensions of SecWalk, we see an increase of 13.1 %
in code size, which is solely coming from using protected pointers and pointer
arithmetic. Conceptually, the only actual software overhead for the protection of
virtual memory is the setup of page tables using the new linking instructions,
which is negligible. When running the protected seL4 kernel on the prototype,
the runtime in terms of cycles increases by 11.6 %. Both overhead numbers are
reasonable considering that all pointers, all pointer arithmetic, and every memory
access of the system is protected against fault attacks.

Table 9.1: Hardware utilization of SecWalk.

Hardware Overhead LUTs [%] Flip-flops [%]

Protected Pointers 6.4 0.12
Residue PTW 3.6 0.32

Sum 10.0 0.44

9.6. Related Work 156

9.5.3 Security Evaluation
The protection of addresses and pointers in the virtual memory domain using
the multi-residue code with the described set of moduli yields code words with a
Hamming distance of D = 5 bits. Thus, this encoding scheme is able to detect
up to four bitflips on pointers and addresses and its supported pointer arithmetic.
Suppose the compiler detects an operation that is not supported by multi-residue
codes, i.e., a bitwise operation. In that case, it decodes the encoded pointer,
performs the unsupported operation on the plain data, and then re-encodes the
data back to the multi-residue domain. While the prototype implementation
currently leaves the pointer unprotected for a short moment, other forms of
redundancy, e.g., spatial redundancy, can be used to protect the pointer during
such an operation. For example, instruction replication [BCR16; Hu+05] can
be used to protect pointer arithmetic through unsupported operations by the
multi-residue code. Note that such unsupported operations only occur very
rarely, as pointer arithmetic tends to use simple operations such as additions and
subtractions, which can operate in the protected domain.

The page table entries contain a multi-residue encoded PPN with a Hamming
distance of D = 5 bits. The secure page table walk incorporates multiple
operations in the encoded multi-residue domain. Throughout the translation
of the virtual address, all residue additions of the page table walk are followed
by a check operation in hardware, as depicted in Figure 9.7. Thus, faults
cannot accumulate over multiple operations on the multi-residue code. With the
selected parameters, the protected page table walk provides protection against
four random bitflips.

9.6 Related Work
Starting with the ARMv8.3-A instruction set, ARM developed a feature named
ARM Pointer Authentication [ARM20; Qua17]. This feature adds new instruc-
tions allowing the software to sign and verify a pointer cryptographically. The
truncated Message Authentication Code (MAC) is thereby stored in the upper
bits of the pointer, reducing its address space. Before accessing the memory, the
pointer is authenticated, and the MAC is removed from the pointer. Then, a
memory load or store operation can access the memory using the authenticated
pointer. While ARM Pointer Authentication has similar design decisions, its
scope of protection is different. They protect special pointers at runtime, i.e., the
stack pointer, to protect against classical software attackers [Lil+19]. However,
they cannot protect pointer arithmetic, nor can they protect the memory access
itself.

There are related works in the context of protecting memory accesses against
fault attacks. ANB-codes [Sch+10] assign each variable a dedicated signature B
at compile-time. When reading the data back from the memory, this signature
is verified using the underlying data encoding scheme of ANB-codes. If this
signature cannot be verified, it means the memory access was redirected and

9.6. Related Work 157

read from a different location. Due to the static assignment of these signatures
at compile-time, ANB-codes can only protect static memory and no dynamic
allocations. Furthermore, they do not support shared memory, thus providing
only a limited scope of protection for their expensive costs.

The protection mechanism presented in Chapter 8 adds redundancy to the
pointer to perform linked memory accesses. To compensate for the overheads of
encoded pointer arithmetic, they extend the processor with new instructions and
develop a compiler using them. While their overheads are reasonably low, their
protection mechanism only supports bare-metal applications of small embedded
use cases. There is no support for virtual and shared memory; thus, it cannot
protect memory accesses of application-class processors against faults.

SecWalk is superior to other protection mechanisms for memory accesses.
While it has a low performance penalty, SecWalk outperforms related work in
terms of supported features. SecWalk supports the protection of virtual memory
accesses against fault attacks, including dynamic allocations and shared memory
between different processes. In Table 9.2, we summarize the comparison of
SecWalk against ANB-codes and purely encoded pointers.

Table 9.2: Feature comparison of SecWalk compared to related work.

Protection Scheme Protection of Protection of OverheadVirtual Memory Shared Memory

ARM Pointer
✗ ✗ LowAuthentication

ANB-Codes ✓ ✗ High
Encoded Pointer ✗ ✗ Low
SecWalk ✓ ✓ Low

9.7. Conclusion 158

9.7 Conclusion
The correct execution of a load or store operation is essential for the security of
the system. With the rise of more powerful embedded systems, operating systems
with virtual memory are commonly deployed in the IoT. When fault attacks
are considered, virtual memory accesses cannot be trusted as there are different
attacks possible which redirect the memory to a different location. Currently,
there is no economic mechanism available that protects virtual memory accesses
against fault attacks, including dynamic and shared memory.

In this chapter, we closed this gap and presented SecWalk, an efficient design
to protect all memory accesses of a program in the virtual and physical domain
against fault attacks. SecWalk protects all pointers and addresses in the virtual
address space using a multi-residue code with no additional storage overhead.
Furthermore, this encoding scheme supports encoded operations, thus also pro-
tecting the pointer arithmetic. We extend the domain of protection and develop
a secure page table walk that propagates the redundancy from the virtual address
to the physical address used for the memory access. The core idea of SecWalk is
to add redundancy to page table entries, add a linking mechanism between virtual
and physical addresses, and then verify the redundancy properties on the page
table walk. The protection is comprehensive, covering the virtual address domain,
the address translation within the MMU and TLB, and the actual memory access
using the translated physical address. Furthermore, SecWalk supports arbitrary
applications, including dynamic and shared memory.

We implemented SecWalk on an open-source RISC-V processor and mapped
the design to an FPGA to showcase the hardware overhead. We developed a
custom LLVM-based toolchain to automatically instrument arbitrary programs
without user interaction. To evaluate the performance of SecWalk, we compile
and execute a set of microbenchmarks. Furthermore, we integrate SecWalk into
the existing microkernel seL4 to show its applicability to real-life applications
using dynamic and shared memory. Our evaluation shows the hardware and
software overheads of SecWalk are reasonable, considering that it protects all
memory accesses of a program against fault attacks.

10
Conclusion and Outlook

In this thesis, we work towards protecting general-purpose software against fault
attacks. Our advanced methodologies exploit the symbiosis of small hardware
changes and the help of a compiler to automatically protect arbitrary software
against fault attacks. By using this approach, we developed multiple techniques
to extend the security of data, control-flow, and the memory subsystem towards
this thesis.

The first part of the thesis was devoted to cryptographic offerings for fault- and
side-channel secure encryption schemes. We showed that by using countermea-
sures against fault attacks at the algorithmic level, we can build energy-efficient
hardware accelerators that can be used for today’s requirements of IoT end-nodes.
We integrated the accelerator into a multi-core SoC and explored the applicability
of the system to different use cases.

Chapter 5, Chapter 6, and Chapter 7 were devoted to advancing the protection
of the program’s control-flow against fault attacks. First, in Chapter 5, we
showed that existing architectural features of processors could be repurposed to
develop countermeasures for fault security. We used ARM PA to develop FIPAC,
which protects the control-flow of a program against software- and fault-based
control-flow attacks at the basic block level. ARM PA was used to compute
an authenticated CFG at compile-time, which is verified during runtime. By
developing different checking policies, the designer can trade off the detection
latency of an attack and the overheads of our protection scheme. Furthermore,
since FIPAC is a software-based approach, it can be applied selectively to critical
code where protection is needed.

In Chapter 6, we took FIPAC, which was designed to protect only the user-
space of a program, and extended its level of protection to the kernel domain. We
exploited the cryptographic state, which is the main pillar of FIPAC’s protection,

159

160

and merged it with the system call interface to the kernel. By linking the system
call to the CFI state, we protected the integrity of the system call flow against
fault attacks with almost no additional overheads. Furthermore, by exploiting
dynamic CFI instrumentation at program startup, we limit possible side-channel
leakage during the CFI-protected software execution.

When looking back at the advances in CFI protection of this thesis, we showed
that the cryptographic state of the CFI is a versatile building block for different
countermeasures. By linking other data, e.g., the system call or a branch value,
to that state, we transform errors between protection domains. This allows
the CFI protection to take over the error detection, which is already in place.
Consequently, it reduces the performance penalty since dedicated checks are not
needed anymore.

During the last part of this thesis, we shifted the focus to protecting the
memory subsystem of modern processing architectures against fault attacks. In
Chapter 8, we showed that well-researched encoding schemes like multi-residue
codes can be used to efficiently protect pointers. The pointer’s limited set of
operations fall into the class of natively supported operations of the residue
code. Thus, we can protect pointers at rest, transportation, and also during
computation without decoding them to plain values. By cleverly selecting the
parameters for the residue code, the storage costs of the redundancy bits came
to a minimum. We extended the scope of protection and used encoded pointers
for scrambled memory accesses. Wrong memory accesses subsequently infected
the data value allowing the software to detect the addressing error. This design
allowed us to protect memory redirects even on the bus level.

In Chapter 9, we extended the memory access protection from bare-metal
systems to application class processors and developed SecWalk. By developing
a protected page table walk, we translated encoded pointers from the virtual
memory domain to the physical one. We used the redundancy properties of
residue codes throughout the page table walk, providing fault security in all
memory domains. Our approach is compatible with mechanisms like shared
memory, which is superior to state-of-the-art protection mechanisms in that area.
With a hardware research prototype and a port of an off-the-shelf OS, we showed
the applicability of SecWalk for real-life applications.

Outlook
In this thesis, we looked at different aspects of protecting software against fault
attacks. A compiler-assisted approach, in combination with small hardware
changes to the processor, is an efficient approach to deploying countermeasures
to existing codebases. However, with fault attacks becoming available to larger
systems, the protection of general-purpose software against fault attacks still
requires additional research efforts in different directions.

161

Data Protection

In terms of protecting software against fault attacks, this thesis focused on
protecting the control-flow of a program and the memory subsystem. Protecting
conditional branches with our approach closed the gap where data from the
program influences the control-flow. Our mechanism automatically encodes all
branch-dependent data to the redundant AN-code domain that can be used to
implement a secure comparison algorithm.

While this is a first step in the right direction of protecting data and its
computation, it is not yet solved. Unfortunately, not all encoding schemes
support all operations that are typically used within standard programs. While
arithmetic codes natively support arithmetic operations in the encoded domain,
they lack support for protected binary operations. Other codes, e.g., binary
linear codes, support binary operations but cannot be used in ordinary arithmetic.
Unfortunately, there are no conversion algorithms available that convert between
different encoding schemes and preserve the redundancy properties of both
encoding schemes.

A different approach to protect the computation is temporal redundancy in
the form of duplicated instructions. Modern application-class cores already have
multiple functional units to implement their super-scaler architectures. To include
redundancy for the computation, the issuing unit of the processor can schedule
the same instruction multiple times. At the end of the execution pipeline, the
processor compares the results from all computations and triggers an exception
if they mismatch. A CPU can even retry the computation in case of a failure.
While this approach can be easily implemented for idempotent instructions, such
as simple arithmetic operations, non-idempotent instructions, i.e., a store to a
memory-mapped device, must be handled differently. Ideally, this approach is
cheaper in terms of overheads compared to simple duplication, i.e., a lock-step of
two cores. Furthermore, such an approach provides certain degrees of flexibility
since the countermeasure can be activated only for some areas of the software
that require a higher degree of protection.

Transparent Memory Encryption

Memory encryption is a trending topic for all modern computing platforms.
While previously only used for special-purpose platforms, memory encryption
is nowadays even included in commodity desktop systems. Memory encryption
adds certain overheads to the system. Thus, the deployed cryptographic modes
of operation are optimized for latency and throughput but not protected against
faults. Future research could investigate the applicability of fault-secure cryp-
tographic modes that can be used for high-performance applications such as
application-class processors. With the rise of tweakable encryption schemes, the
primitives can process additional data, i.e., the tweak. This input can further be
used to bind additional data to the encryption, e.g., to build cryptography-based
memory safety.

162

Confidential Computing

Confidential computing has become a hot topic for existing and new processing
architectures. However, with recent software-induced fault attacks becoming a
threat to large-scale systems, they are also a threat to confidential computing.
Fault attacks on Intel SGX and ARM TrustZone show that existing TEEs are
not yet protected from these new threats. The developed countermeasures,
especially the pure software-based approaches, can help to protect TEEs on
existing hardware. Future system designs, especially newly developed standards
for confidential computing, can incorporate those approaches to provide more
in-depth security also with hardware support.

Attestation and Licensing

The developed control-flow mechanisms in this thesis allow the system to ensure
that the program follows the right direction within the program. This mechanism
can be extended to provide dynamic remote attestation for user applications.
Especially for platforms supporting confidential computing, remote attestation
can provide further measures of security.

In addition, the developed countermeasures in the context of CFI in Chapter 5
can be extended to provide fine-granular software licensing. Only if the system
has loaded the correct encryption keys, i.e., the license key, the control-flow
to certain functions is valid. Thus, paid library functions can only be called if
a valid license is available. In case of an invalid key or license, calling such a
function would yield a detectable control-flow error.

Formal Verification

In this thesis, we analytically looked at the security of our countermeasures or used
fault simulation environments. However, especially in high-security applications,
i.e., in the payment sector, pure fault simulation is often not enough. To improve
the situation, formal verification can be used to provide a mathematical proof
for certain properties. Recent developments in formal methods show that their
performance scales better, thus, they can be used to prove the security properties
of larger systems. Formal tools can be used during the development of hardware
and software. In the context of hardware development, formal tools are already
used to prove the functional correctness of designs. However, these tools can also
be used in the security domain, e.g., they can be used to prove that fault-related
countermeasures are preserved during a synthesis step. A proof then shows that
a hardware design is capable of detecting up to a certain number of bitflips. On
the software side, formal tools can possibly be integrated directly into a compiler
that automatically generates a proof for the compiled and instrumented software.

List of Contributions

In this chapter, Section 10.1 first presents the list of publications on which this
thesis is directly based on. Section 10.2 lists other publications, where I am the
co-author, but which are not part of this thesis.

10.1 Main Publications
[Sch+23] Robert Schilling, Pascal Nasahl, Martin Unterguggenberger, and

Stefan Mangard. “SFP: Providing System Call Flow Protection
against Software and Fault Attacks.” In: CoRR abs/2301.02915
(2023). doi: 10.48550/arXiv.2301.02915.

[SNM22b] Robert Schilling, Pascal Nasahl, and Stefan Mangard. “FIPAC:
Thwarting Fault- and Software-Induced Control-Flow Attacks with
ARM Pointer Authentication.” In: Constructive Side-Channel Anal-
ysis and Secure Design - 13th International Workshop, COSADE
2022, Leuven, Belgium, April 11-12, 2022, Proceedings. Springer,
2022, pp. 100–124. doi: 10.1007/978-3-030-99766-3_5.

[Sch+21] Robert Schilling, Pascal Nasahl, Stefan Weiglhofer, and Stefan
Mangard. “SecWalk: Protecting Page Table Walks Against Fault
Attacks.” In: IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2021, Tysons Corner, VA, USA, Decem-
ber 12-15, 2021. IEEE, 2021, pp. 56–67. doi: 10.1109/HOST49136.
2021.9702269.

[Sch+18b] Robert Schilling, Thomas Unterluggauer, Stefan Mangard, Frank
K. Gürkaynak, Michael Muehlberghuber, and Luca Benini. “High
speed ASIC implementations of leakage-resilient cryptography.” In:
2018 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2018, Dresden, Germany, March 19-23, 2018. IEEE, 2018,
pp. 1259–1264. doi: 10.23919/DATE.2018.8342208.

[SWM18] Robert Schilling, Mario Werner, and Stefan Mangard. “Securing
conditional branches in the presence of fault attacks.” In: 2018
Design, Automation & Test in Europe Conference & Exhibition,
DATE 2018, Dresden, Germany, March 19-23, 2018. IEEE, 2018,
pp. 1586–1591. doi: 10.23919/DATE.2018.8342268.

163

https://doi.org/10.48550/arXiv.2301.02915
https://doi.org/10.1007/978-3-030-99766-3_5
https://doi.org/10.1109/HOST49136.2021.9702269
https://doi.org/10.1109/HOST49136.2021.9702269
https://doi.org/10.23919/DATE.2018.8342208
https://doi.org/10.23919/DATE.2018.8342268

10.2. Contributed Publications 164

[Sch+18c] Robert Schilling, Mario Werner, Pascal Nasahl, and Stefan Man-
gard. “Pointing in the Right Direction - Securing Memory Ac-
cesses in a Faulty World.” In: Proceedings of the 34th Annual Com-
puter Security Applications Conference, ACSAC 2018, San Juan,
PR, USA, December 03-07, 2018. ACM, 2018, pp. 595–604. doi:
10.1145/3274694.3274728.

[Con+17b] Francesco Conti, Robert Schilling, Pasquale Davide Schiavone,
Antonio Pullini, Davide Rossi, Frank Kagan Gürkaynak, Michael
Muehlberghuber, Michael Gautschi, Igor Loi, Germain Haugou,
Stefan Mangard, and Luca Benini. “An IoT Endpoint System-on-
Chip for Secure and Energy-Efficient Near-Sensor Analytics.” In:
IEEE Trans. Circuits Syst. I Regul. Pap. 64-I (2017), pp. 2481–2494.
doi: 10.1109/TCSI.2017.2698019.

10.2 Contributed Publications
[Nas+23] Pascal Nasahl, Martin Unterguggenberger, Rishub Nagpal, Robert

Schilling, David Schrammel, and Stefan Mangard. “SCFI: State
Machine Control-Flow Hardening Against Fault Attacks.” In: Design,
Automation & Test in Europe Conference & Exhibition, DATE 2023,
Antwerp, Belgium, April 17-19, 2023. IEEE, 2023, pp. 1–6. doi:
10.23919/DATE56975.2023.10137038.

[Unt+23] Martin Unterguggenberger, David Schrammel, Pascal Nasahl,
Robert Schilling, Lukas Lamster, and Stefan Mangard. “Multi-
Tag: A Hardware-Software Co-Design for Memory Safety based on
Multi-Granular Memory Tagging.” In: Proceedings of the 2023 ACM
Asia Conference on Computer and Communications Security, ASIA
CCS 2023, Melbourne, VIC, Australia, July 10-14, 2023. ACM,
2023, pp. 177–189. doi: 10.1145/3579856.3590331.

[NSM21] Pascal Nasahl, Robert Schilling, and Stefan Mangard. “Protect-
ing Indirect Branches Against Fault Attacks Using ARM Pointer
Authentication.” In: IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2021, Tysons Corner, VA,
USA, December 12-15, 2021. IEEE, 2021, pp. 68–79. doi: 10.1109/
HOST49136.2021.9702268.

[Nas+21a] Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge,
Marcel Medwed, and Stefan Mangard. “CrypTag: Thwarting Phys-
ical and Logical Memory Vulnerabilities using Cryptographically
Colored Memory.” In: ASIA CCS ’21: ACM Asia Conference on
Computer and Communications Security, Virtual Event, Hong Kong,
June 7-11, 2021. ACM, 2021, pp. 200–212. doi: 10.1145/3433210.
3453684.

https://doi.org/10.1145/3274694.3274728
https://doi.org/10.1109/TCSI.2017.2698019
https://doi.org/10.23919/DATE56975.2023.10137038
https://doi.org/10.1145/3579856.3590331
https://doi.org/10.1109/HOST49136.2021.9702268
https://doi.org/10.1109/HOST49136.2021.9702268
https://doi.org/10.1145/3433210.3453684
https://doi.org/10.1145/3433210.3453684

10.2. Contributed Publications 165

[Nas+21b] Pascal Nasahl, Robert Schilling, Mario Werner, and Stefan Man-
gard. “HECTOR-V: A Heterogeneous CPU Architecture for a Secure
RISC-V Execution Environment.” In: ASIA CCS ’21: ACM Asia
Conference on Computer and Communications Security, Virtual
Event, Hong Kong, June 7-11, 2021. ACM, 2021, pp. 187–199. doi:
10.1145/3433210.3453112.

[Sch+20] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. “ConTExT: A Generic Approach
for Mitigating Spectre.” In: 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society, 2020. url: https:
//www.ndss-symposium.org/ndss-paper/context-a-generic-approac
h-for-mitigating-spectre/.

[Kar+19] Anja F. Karl, Robert Schilling, Roderick Bloem, and Stefan
Mangard. “Small Faults Grow Up - Verification of Error Masking
Robustness in Arithmetically Encoded Programs.” In: Verification,
Model Checking, and Abstract Interpretation - 20th International
Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019,
Proceedings. Springer, 2019, pp. 183–204. doi: 10.1007/978-3-030-
11245-5_9.

[Wer+19] Mario Werner, Robert Schilling, Thomas Unterluggauer, and
Stefan Mangard. “Protecting RISC-V Processors against Physical
Attacks.” In: Design, Automation & Test in Europe Conference &
Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019. IEEE,
2019, pp. 1136–1141. doi: 10.23919/DATE.2019.8714811.

[Gür+17] Frank K. Gürkaynak, Robert Schilling, Michael Muehlberghuber,
Francesco Conti, Stefan Mangard, and Luca Benini. “Multi-core data
analytics SoC with a flexible 1.76 Gbit/s AES-XTS cryptographic
accelerator in 65 nm CMOS.” In: Proceedings of the Fourth Workshop
on Cryptography and Security in Computing Systems, CS2@HiPEAC
2017, Stockholm, Sweden, January 24, 2017. ACM, 2017, pp. 19–24.
doi: 10.1145/3031836.3031840.

[Unt+17] Thomas Unterluggauer, Thomas Korak, Stefan Mangard, Robert
Schilling, Luca Benini, Frank K. Gürkaynak, and Michael Muehlberg-
huber. “Leakage Bounds for Gaussian Side Channels.” In: Smart
Card Research and Advanced Applications - 16th International
Conference, CARDIS 2017, Lugano, Switzerland, November 13-15,
2017, Revised Selected Papers. Springer, 2017, pp. 88–104. doi:
10.1007/978-3-319-75208-2_6.

[Wer+17] Mario Werner, Thomas Unterluggauer, Robert Schilling, David
Schaffenrath, and Stefan Mangard. “Transparent memory encryption
and authentication.” In: 27th International Conference on Field
Programmable Logic and Applications, FPL 2017, Ghent, Belgium,

https://doi.org/10.1145/3433210.3453112
https://www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-mitigating-spectre/
https://www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-mitigating-spectre/
https://www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-mitigating-spectre/
https://doi.org/10.1007/978-3-030-11245-5_9
https://doi.org/10.1007/978-3-030-11245-5_9
https://doi.org/10.23919/DATE.2019.8714811
https://doi.org/10.1145/3031836.3031840
https://doi.org/10.1007/978-3-319-75208-2_6

10.2. Contributed Publications 166

September 4-8, 2017. IEEE, 2017, pp. 1–6. doi: 10.23919/FPL.2017.
8056797.

[Sch+14] Robert Schilling, Manuel Jelinek, Markus Ortoff, and Thomas
Unterluggauer. “A low-area ASIC implementation of AEGIS128—A
fast authenticated encryption algorithm.” In: 22nd Austrian Work-
shop on Microelectronics (Austrochip). 2014, pp. 1–5.

https://doi.org/10.23919/FPL.2017.8056797
https://doi.org/10.23919/FPL.2017.8056797

Bibliography

[Aba+05] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
“Control-flow integrity.” In: Conference on Computer and Commu-
nications Security – CCS. 2005, pp. 340–353. doi: 10.1145/1102120.
1102165.

[AG03] Mehdi-Laurent Akkar and Louis Goubin. “A Generic Protection
against High-Order Differential Power Analysis.” In: Fast Software
Encryption – FSE. 2003, pp. 192–205. doi: 10.1007/978-3-540-
39887-5_15.

[AMT13] Subidh Ali, Debdeep Mukhopadhyay, and Michael Tunstall. “Dif-
ferential fault analysis of AES: towards reaching its limits.” In: J.
Cryptogr. Eng. 3 (2013), pp. 73–97. doi: 10.1007/s13389-012-0046-
y.

[Amb15] Ambiq. Apollo Ultra-Low-Power Microcontrollers. https://ambiq.
com/apollo. [accessed 2023-01-01]. 2015.

[AK] Ross Anderson and Markus Kuhn. “Tamper resistance-a cautionary
note.” In: Proceedings of the second Usenix workshop on electronic
commerce, pp. 1–11.

[App20] Apple Inc. Preparing Your App to Work with Pointer Authentication.
https://developer.apple.com/documentation/security/preparing_
your_app_to_work_with_pointer_authentication. [accessed 2023-01-
01]. 2020.

[App21] Apple Inc. Apple SoC security. https://support.apple.com/guide/
security/apple-soc-security-sec87716a080/web. [accessed 2023-01-
01]. 2021.

[ARM10] ARM Limited. CMSIS - Cortex Microcontroller Software Interface
Standard. https://developer.arm.com/tools-and-software/embedd
ed/cmsis. [accessed 2023-01-01]. 2010. url: https://www.arm.com/
products/processors/cortex-m/cortex-microcontroller-software-
interface-standard.php.

[ARM20] ARM Limited. Arm Architecture Reference Manual Armv8, for
Armv8-A architecture profile. https://documentation-service.arm.
com/static/5fa3bd1eb209f547eebd4141. [accessed 2023-01-01]. 2020.

167

https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1007/978-3-540-39887-5_15
https://doi.org/10.1007/978-3-540-39887-5_15
https://doi.org/10.1007/s13389-012-0046-y
https://doi.org/10.1007/s13389-012-0046-y
https://ambiq.com/apollo
https://ambiq.com/apollo
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://support.apple.com/guide/security/apple-soc-security-sec87716a080/web
https://support.apple.com/guide/security/apple-soc-security-sec87716a080/web
https://developer.arm.com/tools-and-software/embedded/cmsis
https://developer.arm.com/tools-and-software/embedded/cmsis
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://documentation-service.arm.com/static/5fa3bd1eb209f547eebd4141
https://documentation-service.arm.com/static/5fa3bd1eb209f547eebd4141

Bibliography 168

[ARM21] ARM Limited. Arm partners are shipping more than 900 Arm-based
chips per second based on latest results. https://www.arm.com/
company/news/2021/05/arm-partners-are-shipping-more-than-900-
arm-based-chips-per-second. [accessed 2023-01-01]. 2021.

[ARMa] ARM Limited. Arm Architecture Reference Manual for A-profile
architecture, v8.3A. https://developer.arm.com/documentation/
ddi0487/ca. [accessed 2023-01-01].

[ARMb] ARM Limited. Arm Architecture Reference Manual for A-profile
architecture, v8.6A. https://developer.arm.com/documentation/
ddi0487/fa. [accessed 2023-01-01].

[ARMc] ARM Limited. Arm’s solution to the future needs of AI, security and
specialized computing is v9. https://www.arm.com/company/news/
2021/03/arms-answer-to-the-future-of-ai-armv9-architecture.
[accessed 2023-01-01].

[ARMd] ARM Limited. Inside the numbers: 100 billion ARM-based chips.
https://community.arm.com/developer/ip-products/processors/b/
processors-ip-blog/posts/inside-the-numbers-100-billion-arm-
based-chips-1345571105. [accessed 2023-01-01].

[Asa+16] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt,
John Hauser, Adam Izraelevitz, et al. “The rocket chip generator.”
In: EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17 (2016).

[Atm17] Atmel. Atmel AT02333: Safe and Secure Bootloader Implementation
for SAM3/4. http://www.atmel.com/Images/Atmel- 42141- SAM-
AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-
4_Application-Note.pdf. [accessed 2023-01-01]. 2017.

[Ava17] Roberto Avanzi. “The QARMA Block Cipher Family. Almost MDS
Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-
Mansour Constructions With Non-Involutory Central Rounds, and
Search Heuristics for Low-Latency S-Boxes.” In: IACR Trans. Sym-
metric Cryptol. (2017), pp. 4–44. doi: 10.13154/tosc.v2017.i1.4-
44.

[Aza19] Brandon Azad. Examining Pointer Authentication on the iPhone
XS. https://googleprojectzero.blogspot.com/2019/02/examining-
pointer-authentication-on.html. [accessed 2023-01-01]. 2019.

[Bar+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall,
and Claire Whelan. “The Sorcerer’s Apprentice Guide to Fault
Attacks.” In: Proc. IEEE 94 (2006), pp. 370–382. doi: 10.1109/
JPROC.2005.862424.

https://www.arm.com/company/news/2021/05/arm-partners-are-shipping-more-than-900-arm-based-chips-per-second
https://www.arm.com/company/news/2021/05/arm-partners-are-shipping-more-than-900-arm-based-chips-per-second
https://www.arm.com/company/news/2021/05/arm-partners-are-shipping-more-than-900-arm-based-chips-per-second
https://developer.arm.com/documentation/ddi0487/ca
https://developer.arm.com/documentation/ddi0487/ca
https://developer.arm.com/documentation/ddi0487/fa
https://developer.arm.com/documentation/ddi0487/fa
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/inside-the-numbers-100-billion-arm-based-chips-1345571105
http://www.atmel.com/Images/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
http://www.atmel.com/Images/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
http://www.atmel.com/Images/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424

Bibliography 169

[Bar+09] Alessandro Barenghi, Guido Bertoni, Emanuele Parrinello, and Ger-
ardo Pelosi. “Low Voltage Fault Attacks on the RSA Cryptosystem.”
In: Fault Diagnosis and Tolerance in Cryptography – FDTC. 2009,
pp. 23–31. doi: 10.1109/FDTC.2009.30.

[Bar+10a] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi,
and Francesco Regazzoni. “Countermeasures against fault attacks on
software implemented AES: effectiveness and cost.” In: International
Conference on Compilers, Architectures, and Synthesis for Embedded
Systems – CASES. 2010, p. 7. doi: 10.1145/1873548.1873555.

[Bar+10b] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi,
and Francesco Regazzoni. “Low Cost Software Countermeasures
Against Fault Attacks: Implementation and Performances Trade
Offs.” In: Proceedings of 5th Workshop on Embedded Systems Security
- WESS (2010).

[BCR16] Thierno Barry, Damien Couroussé, and Bruno Robisson. “Com-
pilation of a Countermeasure Against Instruction-Skip Fault At-
tacks.” In: International Conference on High-Performance Embed-
ded Architectures and Compilers – HiPEAC. 2016, pp. 1–6. doi:
10.1145/2858930.2858931.

[Bel+15] Sonia Belaïd, Jean-Sébastien Coron, Pierre-Alain Fouque, Benoît
Gérard, Jean-Gabriel Kammerer, and Emmanuel Prouff. “Improved
Side-Channel Analysis of Finite-Field Multiplication.” In: Crypto-
graphic Hardware and Embedded Systems – CHES. 2015, pp. 395–
415. doi: 10.1007/978-3-662-48324-4_20.

[BFG14] Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard. “Side-
Channel Analysis of Multiplications in GF(2128) - Application
to AES-GCM.” In: Advances in Cryptology – ASIACRYPT. 2014,
pp. 306–325. doi: 10.1007/978-3-662-45608-8_17.

[Ben+15] Simone Benatti, Filippo Casamassima, Bojan Milosevic, Elisabetta
Farella, Philipp Schoenle, Schekeb Fateh, Thomas Burger, Qiuting
Huang, and Luca Benini. “A Versatile Embedded Platform for EMG
Acquisition and Gesture Recognition.” In: IEEE Trans. Biomed.
Circuits Syst. 9 (2015), pp. 620–630. doi: 10.1109/TBCAS.2015.
2476555.

[Ben+16] Simone Benatti, Fabio Montagna, Davide Rossi, and Luca Benini.
“Scalable EEG seizure detection on an ultra low power multi-core
architecture.” In: Biomedical Circuits and Systems – BIOCAS. 2016,
pp. 86–89. doi: 10.1109/BioCAS.2016.7833731.

[Ber+09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “Keccak Sponge Function Family Main Document.” In:
Submission to NIST (Round 2) 3 (2009), p. 30.

https://doi.org/10.1109/FDTC.2009.30
https://doi.org/10.1145/1873548.1873555
https://doi.org/10.1145/2858930.2858931
https://doi.org/10.1007/978-3-662-48324-4_20
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1109/TBCAS.2015.2476555
https://doi.org/10.1109/TBCAS.2015.2476555
https://doi.org/10.1109/BioCAS.2016.7833731

Bibliography 170

[BGN05] Eli Biham, Louis Granboulan, and Phong Q. Nguyen. “Impossible
Fault Analysis of RC4 and Differential Fault Analysis of RC4.” In:
Fast Software Encryption – FSE. 2005, pp. 359–367. doi: 10.1007/
11502760_24.

[BS97] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret
Key Cryptosystems.” In: Advances in Cryptology – CRYPTO. 1997,
pp. 513–525. doi: 10.1007/BFb0052259.

[Bit22] Bitcraze. The Crazyflie Nano Quadcopter. https://www.bitcraze.
io/products/crazyflie-2-1. [accessed 2023-01-01]. 2022.

[BS03] Johannes Blömer and Jean-Pierre Seifert. “Fault Based Cryptanal-
ysis of the Advanced Encryption Standard (AES).” In: Financial
Cryptography – FC. 2003, pp. 162–181. doi: 10.1007/978-3-540-
45126-6_12.

[Blö+14] Johannes Blömer, Ricardo Gomes da Silva, Peter Günther, Juliane
Krämer, and Jean-Pierre Seifert. “A Practical Second-Order Fault
Attack against a Real-World Pairing Implementation.” In: Fault
Diagnosis and Tolerance in Cryptography – FDTC. 2014, pp. 123–
136. doi: 10.1109/FDTC.2014.22.

[Bol+13] David Bol, Julien De Vos, Cédric Hocquet, François Botman,
François Durvaux, Sarah Boyd, Denis Flandre, and Jean-Didier
Legat. “SleepWalker: A 25-MHz 0.4-V Sub-mm2 7-µW/MHz Micro-
controller in 65-nm LP/GP CMOS for Low-Carbon Wireless Sensor
Nodes.” In: IEEE J. Solid State Circuits 48 (2013), pp. 20–32. doi:
10.1109/JSSC.2012.2218067.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the
Importance of Checking Cryptographic Protocols for Faults (Ex-
tended Abstract).” In: Advances in Cryptology – EUROCRYPT.
1997, pp. 37–51. doi: 10.1007/3-540-69053-0_4.

[Bor+12] Julia Borghoff et al. “PRINCE - A Low-Latency Block Cipher
for Pervasive Computing Applications - Extended Abstract.” In:
Advances in Cryptology – ASIACRYPT. 2012, pp. 208–225. doi:
10.1007/978-3-642-34961-4_14.

[Bor23] Pietro Borrello. x86 PAC. https : / / github . com / pietroborrello
/CustomProcessingUnit/commit/936a68492ce17bea1dd6a86fdb81a1bb
06661d84. [accessed 2023-01-01]. 2023.

[Bor+] Pietro Borrello, Catherine Easdon, Martin Schwarzl, Roland Czerny,
and Michael Schwarz. “CustomProcessingUnit: Reverse Engineering
and Customization of Intel Microcode.” In: IEEE Workshop on
Offensive Technologies (WOOT 23).

[BH08] Arnaud Boscher and Helena Handschuh. “Masking Does Not Pro-
tect Against Differential Fault Attacks.” In: Fault Diagnosis and
Tolerance in Cryptography – FDTC. 2008, pp. 35–40. doi: 10.1109/
FDTC.2008.12.

https://doi.org/10.1007/11502760_24
https://doi.org/10.1007/11502760_24
https://doi.org/10.1007/BFb0052259
https://www.bitcraze.io/products/crazyflie-2-1
https://www.bitcraze.io/products/crazyflie-2-1
https://doi.org/10.1007/978-3-540-45126-6_12
https://doi.org/10.1007/978-3-540-45126-6_12
https://doi.org/10.1109/FDTC.2014.22
https://doi.org/10.1109/JSSC.2012.2218067
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-642-34961-4_14
https://github.com/pietroborrello/CustomProcessingUnit/commit/936a68492ce17bea1dd6a86fdb81a1bb06661d84
https://github.com/pietroborrello/CustomProcessingUnit/commit/936a68492ce17bea1dd6a86fdb81a1bb06661d84
https://github.com/pietroborrello/CustomProcessingUnit/commit/936a68492ce17bea1dd6a86fdb81a1bb06661d84
https://doi.org/10.1109/FDTC.2008.12
https://doi.org/10.1109/FDTC.2008.12

Bibliography 171

[Bou+12] Kaouthar Bousselam, Giorgio Di Natale, Marie-Lise Flottes, and
Bruno Rouzeyre. “On Countermeasures Against Fault Attacks on the
Advanced Encryption Standard.” In: Fault Analysis in Cryptography.
2012. doi: 10.1007/978-3-642-29656-7_6.

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. “Shap-
ing the Glitch: Optimizing Voltage Fault Injection Attacks.” In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. (2019), pp. 199–224.
doi: 10.13154/tches.v2019.i2.199-224.

[Bro60] David T. Brown. “Error Detecting and Correcting Binary Codes for
Arithmetic Operations.” In: IRE Trans. Electron. Comput. 9 (1960),
pp. 333–337. doi: 10.1109/TEC.1960.5219855.

[Bue19] Davidlohr Bueso. tools/perf-bench: Add basic syscall benchmark.
https://lore.kernel.org/patchwork/patch/1048777. [accessed 2023-
01-01]. 2019.

[Buh+21] Robert Buhren, Hans Niklas Jacob, Thilo Krachenfels, and Jean-
Pierre Seifert. “One Glitch to Rule Them All: Fault Injection Attacks
Against AMD’s Secure Encrypted Virtualization.” In: Conference
on Computer and Communications Security – CCS. 2021, pp. 2875–
2889. doi: 10.1145/3460120.3484779.

[Can+22] Claudio Canella, Sebastian Dorn, Daniel Gruss, and Michael
Schwarz. “SFIP: Coarse-Grained Syscall-Flow-Integrity Protec-
tion in Modern Systems.” In: CoRR abs/2202.13716 (2022). url:
https://arxiv.org/abs/2202.13716.

[Can+21] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
“Automating Seccomp Filter Generation for Linux Applications.” In:
Cloud Computing Security Workshop – CCSW. 2021, pp. 139–151.
doi: 10.1145/3474123.3486762.

[Car+19] Sébastien Carré, Matthieu Desjardins, Adrien Facon, and Sylvain
Guilley. “Exhaustive single bit fault analysis. A use case against
Mbedtls and OpenSSL’s protection on ARM and Intel CPU.” In:
Microprocess. Microsystems 71 (2019). doi: 10.1016/j.micpro.2019.
102860.

[CB17] Lukas Cavigelli and Luca Benini. “Origami: A 803-GOp/s/W Con-
volutional Network Accelerator.” In: IEEE Trans. Circuits Syst.
Video Technol. 27 (2017), pp. 2461–2475. doi: 10.1109/TCSVT.2016.
2592330.

[CMB15] Lukas Cavigelli, Michele Magno, and Luca Benini. “Accelerating
real-time embedded scene labeling with convolutional networks.”
In: Design Automation Conference – DAC. 2015, 108:1–108:6. doi:
10.1145/2744769.2744788.

https://doi.org/10.1007/978-3-642-29656-7_6
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.1109/TEC.1960.5219855
https://lore.kernel.org/patchwork/patch/1048777
https://doi.org/10.1145/3460120.3484779
https://arxiv.org/abs/2202.13716
https://doi.org/10.1145/3474123.3486762
https://doi.org/10.1016/j.micpro.2019.102860
https://doi.org/10.1016/j.micpro.2019.102860
https://doi.org/10.1109/TCSVT.2016.2592330
https://doi.org/10.1109/TCSVT.2016.2592330
https://doi.org/10.1145/2744769.2744788

Bibliography 172

[CPA15] Christopher Celio, David A Patterson, and Krste Asanovic. “The
berkeley out-of-order machine (boom): An industry-competitive, syn-
thesizable, parameterized risc-v processor.” In: EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-167
(2015).

[Che+10] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-
Reza Sadeghi, Hovav Shacham, and Marcel Winandy. “Return-
oriented programming without returns.” In: Conference on Computer
and Communications Security – CCS. 2010, pp. 559–572. doi: 10.
1145/1866307.1866370.

[CY03] Chien-Ning Chen and Sung-Ming Yen. “Differential Fault Analysis
on AES Key Schedule and Some Coutnermeasures.” In: Information
Security and Privacy – ACISP. 2003, pp. 118–129. doi: 10.1007/3-
540-45067-X_11.

[Che+16] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze.
“14.5 Eyeriss: An energy-efficient reconfigurable accelerator for deep
convolutional neural networks.” In: International Solid-State Circuits
Conference – ISSCC. 2016, pp. 262–263. doi: 10.1109/ISSCC.2016.
7418007.

[Che18] Zhi Chen. “SIMD Assisted Fault Detection and Fault Attack Miti-
gation.” PhD thesis. University of California, Irvine, USA, 2018.

[Che+17] Zhi Chen, Junjie Shen, Alex Nicolau, Alexander V. Veidenbaum,
Nahid Farhady Ghalaty, and Rosario Cammarota. “CAMFAS:
A Compiler Approach to Mitigate Fault Attacks via Enhanced
SIMDization.” In: Fault Diagnosis and Tolerance in Cryptography –
FDTC. 2017, pp. 57–64. doi: 10.1109/FDTC.2017.10.

[CO23] Zitai Chen and David F. Oswald. “PMFault: Faulting and Brick-
ing Server CPUs through Management Interfaces.” In: CoRR
abs/2301.05538 (2023). doi: 10.48550/arXiv.2301.05538.

[Che+21] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David F.
Oswald, and Flavio D. Garcia. “VoltPillager: Hardware-based fault
injection attacks against Intel SGX Enclaves using the SVID voltage
scaling interface.” In: USENIX Security Symposium. 2021, pp. 699–
716. url: https://www.usenix.org/conference/usenixsecurity21/
presentation/chen-zitai.

[Cle+17] Ruan de Clercq, Johannes Götzfried, David Übler, Pieter Maene, and
Ingrid Verbauwhede. “SOFIA: Software and control flow integrity
architecture.” In: Comput. Secur. 68 (2017), pp. 16–35. doi: 10.
1016/j.cose.2017.03.013.

https://doi.org/10.1145/1866307.1866370
https://doi.org/10.1145/1866307.1866370
https://doi.org/10.1007/3-540-45067-X_11
https://doi.org/10.1007/3-540-45067-X_11
https://doi.org/10.1109/ISSCC.2016.7418007
https://doi.org/10.1109/ISSCC.2016.7418007
https://doi.org/10.1109/FDTC.2017.10
https://doi.org/10.48550/arXiv.2301.05538
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://doi.org/10.1016/j.cose.2017.03.013
https://doi.org/10.1016/j.cose.2017.03.013

Bibliography 173

[Cle+16] Ruan de Clercq, Ronald De Keulenaer, Bart Coppens, Bohan Yang,
Pieter Maene, Koen De Bosschere, Bart Preneel, Bjorn De Sutter,
and Ingrid Verbauwhede. “SOFIA: Software and control flow in-
tegrity architecture.” In: Design, Automation & Test in Europe –
DATE. 2016, pp. 1172–1177. url: https://ieeexplore.ieee.org/
document/7459489/.

[Con+17a] Francesco Conti, Daniele Palossi, Renzo Andri, Michele Magno,
and Luca Benini. “Accelerated Visual Context Classification on a
Low-Power Smartwatch.” In: IEEE Trans. Hum. Mach. Syst. 47
(2017), pp. 19–30. doi: 10.1109/THMS.2016.2623482.

[Con+14] Francesco Conti, Chuck Pilkington, Andrea Marongiu, and Luca
Benini. “He-P2012: architectural heterogeneity exploration on a
scalable many-core platform.” In: Great Lakes Symposium on VLSI
– GLVLSI. 2014, pp. 231–232. doi: 10.1145/2591513.2591553.

[CFC] Thomas Coudray, Arnaud Fontaine, and Pierre Chifflier. “PICON:
control flow integrity on LLVM IR.” In: Symposium sur la sécurité
des technologies de l’information et des communications, Rennes,
France, pp. 3–5.

[CDA14] John Criswell, Nathan Dautenhahn, and Vikram S. Adve. “KCoFI:
Complete Control-Flow Integrity for Commodity Operating System
Kernels.” In: IEEE Symposium on Security and Privacy – S&P.
2014, pp. 292–307. doi: 10.1109/SP.2014.26.

[CH17] Ang Cui and Rick Housley. “BADFET: Defeating Modern Secure
Boot Using Second-Order Pulsed Electromagnetic Fault Injection.”
In: Workshop on Offensive Technologies – WOOT. 2017. url: https:
//www.usenix.org/conference/woot17/workshop-program/presentat
ion/cui.

[Dah+12] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. “Context-
Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary
Speech Recognition.” In: IEEE Trans. Speech Audio Process. 20
(2012), pp. 30–42. doi: 10.1109/TASL.2011.2134090.

[Din+19] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin,
Johann Großschädl, and Alex Biryukov. “Triathlon of lightweight
block ciphers for the Internet of things.” In: J. Cryptogr. Eng. 9
(2019), pp. 283–302. doi: 10.1007/s13389-018-0193-x.

[Dob+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan
Mangard, Florian Mendel, and Robert Primas. “SIFA: Exploiting
Ineffective Fault Inductions on Symmetric Cryptography.” In: IACR
Trans. Cryptogr. Hardw. Embed. Syst. (2018), pp. 547–572. doi:
10.13154/tches.v2018.i3.547-572.

https://ieeexplore.ieee.org/document/7459489/
https://ieeexplore.ieee.org/document/7459489/
https://doi.org/10.1109/THMS.2016.2623482
https://doi.org/10.1145/2591513.2591553
https://doi.org/10.1109/SP.2014.26
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://doi.org/10.1109/TASL.2011.2134090
https://doi.org/10.1007/s13389-018-0193-x
https://doi.org/10.13154/tches.v2018.i3.547-572

Bibliography 174

[Dob+14] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, and Flo-
rian Mendel. “On the Security of Fresh Re-keying to Counteract
Side-Channel and Fault Attacks.” In: Smart Card Research and Ad-
vanced Applications – CARDIS. 2014, pp. 233–244. doi: 10.1007/978-
3-319-16763-3_14.

[Dob+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, Bart Mennink, Robert Primas, and Thomas Unterluggauer.
“Isap v2.0.” In: IACR Trans. Symmetric Cryptol. (2020), pp. 390–
416. doi: 10.13154/tosc.v2020.iS1.390-416.

[Dob+16] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, and Thomas Unterluggauer. “ISAP - Authenticated En-
cryption Inherently Secure Against Passive Side-Channel Attacks.”
In: IACR Cryptol. ePrint Arch. (2016), p. 952. url: http://eprint.
iacr.org/2016/952.

[Dob+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, and Thomas Unterluggauer. “ISAP - Towards Side-Channel
Secure Authenticated Encryption.” In: IACR Trans. Symmetric
Cryptol. (2017), pp. 80–105. doi: 10.13154/tosc.v2017.i1.80-105.

[Dob+15] Christoph Dobraunig, François Koeune, Stefan Mangard, Florian
Mendel, and François-Xavier Standaert. “Towards Fresh and Hybrid
Re-Keying Schemes with Beyond Birthday Security.” In: Smart Card
Research and Advanced Applications – CARDIS. 2015, pp. 225–241.
doi: 10.1007/978-3-319-31271-2_14.

[Du+15] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li,
Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. “ShiDian-
Nao: shifting vision processing closer to the sensor.” In: International
Symposium on Computer Architecture – ISCA. 2015, pp. 92–104.
doi: 10.1145/2749469.2750389.

[Dwo+10] Morris J Dworkin et al. Recommendation for block cipher modes
of operation: The XTS-AES mode for confidentiality on storage
devices. National Inst of Standards and Technology Gaithersburg
MD Computer security Div, 2010.

[EEM] EEMBC. CoreMark: An EEMBC Benchmark. https://www.eembc.
org/coremark/. [accessed 2023-01-01].

[EKE08] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. “Veri-
fied Protection Model of the seL4 Microkernel.” In: International
Conference on Verified Software: Theories, Tools, and Experiments –
VSTTE. 2008, pp. 99–114. doi: 10.1007/978-3-540-87873-5_11.

[Eva+15] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar,
Tiffany Tang, Howard E. Shrobe, Stelios Sidiroglou-Douskos, Martin
C. Rinard, and Hamed Okhravi. “Missing the Point(er): On the
Effectiveness of Code Pointer Integrity.” In: IEEE Symposium on

https://doi.org/10.1007/978-3-319-16763-3_14
https://doi.org/10.1007/978-3-319-16763-3_14
https://doi.org/10.13154/tosc.v2020.iS1.390-416
http://eprint.iacr.org/2016/952
http://eprint.iacr.org/2016/952
https://doi.org/10.13154/tosc.v2017.i1.80-105
https://doi.org/10.1007/978-3-319-31271-2_14
https://doi.org/10.1145/2749469.2750389
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
https://doi.org/10.1007/978-3-540-87873-5_11

Bibliography 175

Security and Privacy – S&P. 2015, pp. 781–796. doi: 10.1109/SP.
2015.53.

[Fan+22] Andrea Fanti, Carlos Chinea Perez, Rémi Denis-Courmont, Gianluca
Roascio, and Jan-Erik Ekberg. “Toward Register Spilling Security
Using LLVM and ARM Pointer Authentication.” In: IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 41 (2022), pp. 3757–3766.
doi: 10.1109/TCAD.2022.3197511.

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. “Prac-
tical Leakage-Resilient Symmetric Cryptography.” In: Cryptographic
Hardware and Embedded Systems – CHES. 2012, pp. 213–232. doi:
10.1007/978-3-642-33027-8_13.

[Fel22] Rich Felker. musl libc. https://musl.libc.org. [accessed 2023-01-01].
2022.

[FSS09] Christof Fetzer, Ute Schiffel, and Martin Süßkraut. “AN-Encoding
Compiler: Building Safety-Critical Systems with Commodity Hard-
ware.” In: Computer Safety, Reliability and Security – SAFECOMP.
2009, pp. 283–296. doi: 10.1007/978-3-642-04468-7_23.

[For] P. Forin. “Vital coded microprocessor: Principles and application
for various transit systems.” In: IFAC/IFIP/IFORS Symposium
on Control, Computers, Communications in Transportation, Paris,
France, 19-21 September, pp. 79–84. doi: https://doi.org/10.1016/
S1474-6670(17)52653-1.

[Fre20] Free Software Foundation Inc. GCC 7 Release Series Changes, New
Features, and Fixes. https://gcc.gnu.org/gcc- 7/changes.html.
[accessed 2023-01-01]. 2020.

[Fre11] Free60.org. Reset Glitch Hack. https://free60.org/Hacks/Reset_
Glitch_Hack. [accessed 2023-01-01]. 2011.

[Fuh+13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard.
“Fault Attacks on AES with Faulty Ciphertexts Only.” In: Fault
Diagnosis and Tolerance in Cryptography – FDTC. 2013, pp. 108–
118. doi: 10.1109/FDTC.2013.18.

[Gau+17] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber,
Igor Loi, Antonio Pullini, Davide Rossi, Eric Flamand, Frank K.
Gürkaynak, and Luca Benini. “Near-Threshold RISC-V Core With
DSP Extensions for Scalable IoT Endpoint Devices.” In: IEEE
Trans. Very Large Scale Integr. Syst. 25 (2017), pp. 2700–2713. doi:
10.1109/TVLSI.2017.2654506.

[GCC23] GCC Team. GCC - [AArch64][1/4] Support Return address pro-
tection on AArch64. https : / / gcc . gnu . org / git / ?p = gcc . git ;
a=commit;h=db58fd8954f5dfd868dbed110f2c8a04bb4b0753. [accessed
2023-01-01]. 2023.

https://doi.org/10.1109/SP.2015.53
https://doi.org/10.1109/SP.2015.53
https://doi.org/10.1109/TCAD.2022.3197511
https://doi.org/10.1007/978-3-642-33027-8_13
https://musl.libc.org
https://doi.org/10.1007/978-3-642-04468-7_23
https://doi.org/https://doi.org/10.1016/S1474-6670(17)52653-1
https://doi.org/https://doi.org/10.1016/S1474-6670(17)52653-1
https://gcc.gnu.org/gcc-7/changes.html
https://free60.org/Hacks/Reset_Glitch_Hack
https://free60.org/Hacks/Reset_Glitch_Hack
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1109/TVLSI.2017.2654506
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=db58fd8954f5dfd868dbed110f2c8a04bb4b0753
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=db58fd8954f5dfd868dbed110f2c8a04bb4b0753

Bibliography 176

[Ge+16] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger.
“Fine-Grained Control-Flow Integrity for Kernel Software.” In: Euro-
pean Symposium on Security and Privacy – EuroS&P. 2016, pp. 179–
194. doi: 10.1109/EuroSP.2016.24.

[Gha+14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa M. I. Taha, and
Patrick Schaumont. “Differential Fault Intensity Analysis.” In: Fault
Diagnosis and Tolerance in Cryptography – FDTC. 2014, pp. 49–58.
doi: 10.1109/FDTC.2014.15.

[Ghi21] Alexandre Ghiti. Virtual Memory Layout on RISC-V Linux. htt
ps://www.kernel.org/doc/html/latest/riscv/vm- layout.html.
[accessed 2023-01-01]. 2021.

[Gir+14] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
“Rich Feature Hierarchies for Accurate Object Detection and Seman-
tic Segmentation.” In: Computer Vision and Pattern Recognition
Conference – CVPR. 2014, pp. 580–587. doi: 10.1109/CVPR.2014.81.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to con-
struct random functions.” In: J. ACM 33 (1986), pp. 792–807. doi:
10.1145/6490.6503.

[Gol+03] Olga Goloubeva, Maurizio Rebaudengo, Matteo Sonza Reorda, and
Massimo Violante. “Soft-Error Detection Using Control Flow Asser-
tions.” In: International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems – DFT. 2003, pp. 581–588.
doi: 10.1109/DFTVS.2003.1250158.

[Goo15] Google Project Zero. Exploiting the DRAM rowhammer bug to
gain kernel privileges. https://googleprojectzero.blogspot.com/
2015/03/exploiting-dram-rowhammer-bug-to-gain.html. [accessed
2023-01-01]. 2015.

[GP99] Louis Goubin and Jacques Patarin. “DES and Differential Power
Analysis (The "Duplication" Method).” In: Cryptographic Hardware
and Embedded Systems – CHES. 1999, pp. 158–172. doi: 10.1007/3-
540-48059-5_15.

[Gru+18] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
“Another Flip in the Wall of Rowhammer Defenses.” In: IEEE
Symposium on Security and Privacy – S&P. 2018, pp. 245–261. doi:
10.1109/SP.2018.00031.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript.” In:
Detection of Intrusions and Malware & Vulnerability Assessment –
DIMVA. 2016, pp. 300–321. doi: 10.1007/978-3-319-40667-1_15.

[Gue10] Shay Gueron. “Intel advanced encryption standard (AES) instruc-
tions set.” In: Intel White Paper, Rev 3 (2010), pp. 1–94.

https://doi.org/10.1109/EuroSP.2016.24
https://doi.org/10.1109/FDTC.2014.15
https://www.kernel.org/doc/html/latest/riscv/vm-layout.html
https://www.kernel.org/doc/html/latest/riscv/vm-layout.html
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1145/6490.6503
https://doi.org/10.1109/DFTVS.2003.1250158
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1007/978-3-319-40667-1_15

Bibliography 177

[Gue13] Shay Gueron. “AES-GCM software performance on the current high
end CPUs as a performance baseline for CAESAR competition.” In:
Directions in Authenticated Ciphers (DIAC) (2013).

[GJ16] Qian Guo and Thomas Johansson. “A New Birthday-Type Algo-
rithm for Attacking the Fresh Re-Keying Countermeasure.” In: IACR
Cryptol. ePrint Arch. (2016), p. 225. url: http://eprint.iacr.org/
2016/225.

[Ham50] Richard W Hamming. “Error detecting and error correcting codes.”
In: Bell Labs Technical Journal (1950).

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
Residual Learning for Image Recognition.” In: Computer Vision and
Pattern Recognition Conference – CVPR. 2016, pp. 770–778. doi:
10.1109/CVPR.2016.90.

[HBB16] Wei He, Jakub Breier, and Shivam Bhasin. “Cheap and Cheerful:
A Low-Cost Digital Sensor for Detecting Laser Fault Injection
Attacks.” In: International Conference on Security, Privacy, and
Applied Cryptography Engineering – SPACE. 2016, pp. 27–46. doi:
10.1007/978-3-319-49445-6_2.

[Her+21] Jan Van den Herrewegen, David F. Oswald, Flavio D. Garcia, and
Qais Temeiza. “Fill your Boots: Enhanced Embedded Bootloader
Exploits via Fault Injection and Binary Analysis.” In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. (2021), pp. 56–81. doi: 10.46586/
tches.v2021.i1.56-81.

[HLB19] Karine Heydemann, Jean-François Lalande, and Pascal Berthomé.
“Formally verified software countermeasures for control-flow integrity
of smart card C code.” In: Comput. Secur. 85 (2019), pp. 202–224.
doi: 10.1016/j.cose.2019.05.004.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. “Robust
Authenticated-Encryption AEZ and the Problem That It Solves.”
In: Advances in Cryptology – EUROCRYPT. 2015, pp. 15–44. doi:
10.1007/978-3-662-46800-5_2.

[Hoc+11] Cédric Hocquet, Dina Kamel, Francesco Regazzoni, Jean-Didier
Legat, Denis Flandre, David Bol, and François-Xavier Standaert.
“Harvesting the potential of nano-CMOS for lightweight cryptogra-
phy: an ultra-low-voltage 65 nm AES coprocessor for passive RFID
tags.” In: J. Cryptogr. Eng. 1 (2011), pp. 79–86. doi: 10.1007/s13389-
011-0005-z.

[Hof+14] Martin Hoffmann, Peter Ulbrich, Christian Dietrich, Horst Schirmeier,
Daniel Lohmann, and Wolfgang Schröder-Preikschat. “A Practi-
tioner’s Guide to Software-Based Soft-Error Mitigation Using AN-
Codes.” In: International Symposium on High-Assurance Systems
Engineering – HASE. 2014, pp. 33–40. doi: 10.1109/HASE.2014.14.

http://eprint.iacr.org/2016/225
http://eprint.iacr.org/2016/225
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-319-49445-6_2
https://doi.org/10.46586/tches.v2021.i1.56-81
https://doi.org/10.46586/tches.v2021.i1.56-81
https://doi.org/10.1016/j.cose.2019.05.004
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/s13389-011-0005-z
https://doi.org/10.1007/s13389-011-0005-z
https://doi.org/10.1109/HASE.2014.14

Bibliography 178

[HZH22] Konrad Hohentanner, Philipp Zieris, and Julian Horsch. “PACSafe:
Leveraging ARM Pointer Authentication for Memory Safety in
C/C++.” In: CoRR abs/2202.08669 (2022). url: https://arxiv.
org/abs/2202.08669.

[Hu+16] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua,
Prateek Saxena, and Zhenkai Liang. “Data-Oriented Programming:
On the Expressiveness of Non-control Data Attacks.” In: IEEE
Symposium on Security and Privacy – S&P. 2016, pp. 969–986. doi:
10.1109/SP.2016.62.

[Hu+05] Jie S. Hu, Feihui Li, Vijay Degalahal, Mahmut T. Kandemir,
Narayanan Vijaykrishnan, and Mary Jane Irwin. “Compiler-Directed
Instruction Duplication for Soft Error Detection.” In: Design, Au-
tomation & Test in Europe – DATE. 2005, pp. 1056–1057. doi:
10.1109/DATE.2005.98.

[HHF09] Ralf Hund, Thorsten Holz, and Felix C. Freiling. “Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms.”
In: USENIX Security Symposium. 2009, pp. 383–398. url: http:
//www.usenix.org/events/sec09/tech/full_papers/hund.pdf.

[HS13] Michael Hutter and Jörn-Marc Schmidt. “The Temperature Side
Channel and Heating Fault Attacks.” In: Smart Card Research
and Advanced Applications – CARDIS. 2013, pp. 219–235. doi:
10.1007/978-3-319-08302-5_15.

[Inf23] Infineon Technologies AG. AURIX™ 32-bit microcontrollers for
automotive and industrial applications. https://www.infineon.com/
dgdl/Infineon- TriCore_Family_BR- ProductBrochure- v01_00- EN.
pdf. [accessed 2023-01-01]. 2023.

[Jal+20] Georges-Axel Jaloyan, Konstantinos Markantonakis, Raja Naeem
Akram, David Robin, Keith Mayes, and David Naccache. “Return-
Oriented Programming on RISC-V.” In: Conference on Computer
and Communications Security – CCS. 2020, pp. 471–480. doi: 10.
1145/3320269.3384738.

[Jon] Douglas W. Jones. Modulus without Division, a tutorial. http://
homepage.divms.uiowa.edu/~jones/bcd/mod.shtml. [accessed 2023-
01-01].

[JWK04] Nikhil Joshi, Kaijie Wu, and Ramesh Karri. “Concurrent Error
Detection Schemes for Involution Ciphers.” In: Cryptographic Hard-
ware and Embedded Systems – CHES. 2004, pp. 400–412. doi:
10.1007/978-3-540-28632-5_29.

[KSV13] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede.
“Hardware Designer’s Guide to Fault Attacks.” In: IEEE Trans.
Very Large Scale Integr. Syst. 21 (2013), pp. 2295–2306. doi: 10.
1109/TVLSI.2012.2231707.

https://arxiv.org/abs/2202.08669
https://arxiv.org/abs/2202.08669
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/DATE.2005.98
http://www.usenix.org/events/sec09/tech/full_papers/hund.pdf
http://www.usenix.org/events/sec09/tech/full_papers/hund.pdf
https://doi.org/10.1007/978-3-319-08302-5_15
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf
https://doi.org/10.1145/3320269.3384738
https://doi.org/10.1145/3320269.3384738
http://homepage.divms.uiowa.edu/~jones/bcd/mod.shtml
http://homepage.divms.uiowa.edu/~jones/bcd/mod.shtml
https://doi.org/10.1007/978-3-540-28632-5_29
https://doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.1109/TVLSI.2012.2231707

Bibliography 179

[Kar+02] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim.
“Concurrent error detection schemes for fault-based side-channel
cryptanalysis of symmetric block ciphers.” In: IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 21 (2002), pp. 1509–1517. doi:
10.1109/TCAD.2002.804378.

[Ken+20] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. “V0LTpwn: Attacking x86 Processor Integrity
from Software.” In: USENIX Security Symposium. 2020, pp. 1445–
1461. url: https://www.usenix.org/conference/usenixsecurity20/
presentation/kenjar.

[Ker22a] Kernel Authors. Linux Kernel. https://git.kernel.org/pub/scm/
linux/kernel/git/stable/linux.git/tag/?h=v5.15.32. [accessed
2023-01-01]. 2022.

[Ker22b] Michael Kerrisk. syscall(2) — Linux manual page. https://man7.
org/linux/man-pages/man2/syscall.2.html. [accessed 2023-01-01].
2022.

[Kha+12] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid
Khan. “Future Internet: The Internet of Things Architecture, Possi-
ble Applications and Key Challenges.” In: International Conference
on Frontiers of Information Technology – FIT. 2012, pp. 257–260.
doi: 10.1109/FIT.2012.53.

[KQ07] Chong Hee Kim and Jean-Jacques Quisquater. “Fault Attacks for
CRT Based RSA: New Attacks, New Results, and New Counter-
measures.” In: Information Security Theory and Practice – WISTP.
2007, pp. 215–228. doi: 10.1007/978-3-540-72354-7_18.

[Kim+14] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors.” In: International Symposium
on Computer Architecture – ISCA. 2014, pp. 361–372. doi: 10.1109/
ISCA.2014.6853210.

[Kis+16] Ágnes Kiss, Juliane Krämer, Pablo Rauzy, and Jean-Pierre Seifert.
“Algorithmic Countermeasures Against Fault Attacks and Power
Analysis for RSA-CRT.” In: Constructive Side-Channel Analysis and
Secure Design – COSADE. 2016, pp. 111–129. doi: 10.1007/978-3-
319-43283-0_7.

[Kle+09] Gerwin Klein et al. “seL4: formal verification of an OS kernel.”
In: Workshop on System Software for Trusted Execution – Sys-
TEX@SOSP. 2009, pp. 207–220. doi: 10.1145/1629575.1629596.

[Kle+10] Gerwin Klein et al. “seL4: formal verification of an operating-system
kernel.” In: Commun. ACM 53 (2010), pp. 107–115. doi: 10.1145/
1743546.1743574.

https://doi.org/10.1109/TCAD.2002.804378
https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar
https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tag/?h=v5.15.32
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tag/?h=v5.15.32
https://man7.org/linux/man-pages/man2/syscall.2.html
https://man7.org/linux/man-pages/man2/syscall.2.html
https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1007/978-3-540-72354-7_18
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1007/978-3-319-43283-0_7
https://doi.org/10.1007/978-3-319-43283-0_7
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/1743546.1743574

Bibliography 180

[Koc03] Paul C. Kocher. “Leak-resistant cryptographic indexed key update.”
US Patent 6539092. Mar. 25, 2003.

[Kog+22] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.
“Half-Double: Hammering From the Next Row Over.” In: USENIX
Security Symposium. 2022, pp. 3807–3824. url: https://www.use
nix.org/conference/usenixsecurity22/presentation/kogler-half-
double.

[Kon+16] Mario Konijnenburg et al. “A Multi(bio)sensor Acquisition System
With Integrated Processor, Power Management, 8×8 LED Drivers,
and Simultaneously Synchronized ECG, BIO-Z, GSR, and Two PPG
Readouts.” In: IEEE J. Solid State Circuits 51 (2016), pp. 2584–
2595. doi: 10.1109/JSSC.2016.2605660.

[KH14] Thomas Korak and Michael Hoefler. “On the Effects of Clock and
Power Supply Tampering on Two Microcontroller Platforms.” In:
Fault Diagnosis and Tolerance in Cryptography – FDTC. 2014, pp. 8–
17. doi: 10.1109/FDTC.2014.11.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Ima-
geNet Classification with Deep Convolutional Neural Networks.”
In: Conference and Workshop on Neural Information Processing
Systems – NIPS. 2012, pp. 1106–1114. url: https://proceedings.
neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html.

[Lac+18] Benjamin Lac, Anne Canteaut, Jacques J. A. Fournier, and Renaud
Sirdey. “Thwarting Fault Attacks against Lightweight Cryptography
using SIMD Instructions.” In: International Symposium on Circuits
and Systems – ISCAS. 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.
8351693.

[LHB14] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé.
“Software Countermeasures for Control Flow Integrity of Smart
Card C Codes.” In: European Symposium on Research in Computer
Security – ESORICS. 2014, pp. 200–218. doi: 10.1007/978-3-319-
11212-1_12.

[LA04] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation.” In: Interna-
tional Symposium on Code Generation and Optimization – CGO.
2004, pp. 75–88. doi: 10.1109/CGO.2004.1281665.

[Lav78] Simon H. Lavington. “The Manchester Mark I and Atlas: A His-
torical Perspective.” In: Commun. ACM 21 (1978), pp. 4–12. doi:
10.1145/359327.359331.

https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://doi.org/10.1109/JSSC.2016.2605660
https://doi.org/10.1109/FDTC.2014.11
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/ISCAS.2018.8351693
https://doi.org/10.1109/ISCAS.2018.8351693
https://doi.org/10.1007/978-3-319-11212-1_12
https://doi.org/10.1007/978-3-319-11212-1_12
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/359327.359331

Bibliography 181

[Lee+17] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul
Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent
ByungHoon Kang. “Hacking in Darkness: Return-oriented Program-
ming against Secure Enclaves.” In: USENIX Security Symposium.
2017, pp. 523–539. url: https : / / www . usenix . org / conference /
usenixsecurity17/technical-sessions/presentation/lee-jaehyuk.

[LV13] Kyong-Ho Lee and Naveen Verma. “A Low-Power Processor With
Configurable Embedded Machine-Learning Accelerators for High-
Order and Adaptive Analysis of Medical-Sensor Signals.” In: IEEE
J. Solid State Circuits 48 (2013), pp. 1625–1637. doi: 10.1109/JSSC.
2013.2253226.

[Li+15] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang
Hua. “A convolutional neural network cascade for face detection.”
In: Computer Vision and Pattern Recognition Conference – CVPR.
2015, pp. 5325–5334. doi: 10.1109/CVPR.2015.7299170.

[Li+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga,
Junko Takahashi, and Kazuo Ohta. “Fault Sensitivity Analysis.”
In: Cryptographic Hardware and Embedded Systems – CHES. 2010,
pp. 320–334. doi: 10.1007/978-3-642-15031-9_22.

[Li+22] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer,
Ying Liu, and Chao Zhang. “PACMem: Enforcing Spatial and Tem-
poral Memory Safety via ARM Pointer Authentication.” In: Con-
ference on Computer and Communications Security – CCS. 2022,
pp. 1901–1915. doi: 10.1145/3548606.3560598.

[LG19] Haohao Liao and Catherine H. Gebotys. “Methodology for EM Fault
Injection: Charge-based Fault Model.” In: Design, Automation &
Test in Europe – DATE. 2019, pp. 256–259. doi: 10.23919/DATE.
2019.8715150.

[Lil+21] Hans Liljestrand, Thomas Nyman, Lachlan J. Gunn, Jan-Erik Ek-
berg, and N. Asokan. “PACStack: an Authenticated Call Stack.”
In: USENIX Security Symposium. 2021, pp. 357–374. url: https:
/ / www . usenix . org / conference / usenixsecurity21 / presentation /
liljestrand.

[Lil+19] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N. Asokan. “PAC it up: Towards Pointer
Integrity using ARM Pointer Authentication.” In: USENIX Security
Symposium. 2019, pp. 177–194. url: https://www.usenix.org/
conference/usenixsecurity19/presentation/liljestrand.

[Lin23] Linaro Limited. Mbed TLS. https://www.trustedfirmware.org/
projects/mbed-tls/. [accessed 2023-01-01]. 2023.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://doi.org/10.1109/JSSC.2013.2253226
https://doi.org/10.1109/JSSC.2013.2253226
https://doi.org/10.1109/CVPR.2015.7299170
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1145/3548606.3560598
https://doi.org/10.23919/DATE.2019.8715150
https://doi.org/10.23919/DATE.2019.8715150
https://www.usenix.org/conference/usenixsecurity21/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity21/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity21/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand
https://www.trustedfirmware.org/projects/mbed-tls/
https://www.trustedfirmware.org/projects/mbed-tls/

Bibliography 182

[Lip+20] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker
Tadesse Aga, Clémentine Maurice, and Daniel Gruss. “Netham-
mer: Inducing Rowhammer Faults through Network Requests.” In:
European Symposium on Security and Privacy – EuroS&P. 2020,
pp. 710–719. doi: 10.1109/EuroSPW51379.2020.00102.

[LLV19] LLVM Team. Pointer Authentication. https://github.com/apple/
llvm-project/blob/apple/master/clang/docs/PointerAuthenticati
on.rst. [accessed 2023-01-01]. 2019.

[LLV23] LLVM Team. LLVM - [AArch64] - Generate pointer authentication
instructions. https://github.com/llvm/llvm-project/commit/64dcd
ec60cdc3612cc5cf14dea6599b91a5f94bd. [accessed 2023-01-01]. 2023.

[Lv+18] ShaoHua Lv, Jian Wang, Yinqi Yang, and Jiqiang Liu. “Intru-
sion Prediction With System-Call Sequence-to-Sequence Model.” In:
IEEE Access 6 (2018), pp. 71413–71421. doi: 10.1109/ACCESS.2018.
2881561.

[MSY06] Tal Malkin, François-Xavier Standaert, and Moti Yung. “A Com-
parative Cost/Security Analysis of Fault Attack Countermeasures.”
In: Fault Diagnosis and Tolerance in Cryptography – FDTC. 2006,
pp. 159–172. doi: 10.1007/11889700_15.

[MIR04] Venkateswara Sarma Mallela, V Ilankumaran, and N.Srinivasa Rao.
“Trends in Cardiac Pacemaker Batteries.” In: Indian Pacing and
Electrophysiology Journal 4 (2004), pp. 201–212.

[Mar20] Catalin Marinas. Memory Layout on AArch64 Linux. https://
www.kernel.org/doc/html/latest/arm64/memory.html. [accessed
2023-01-01]. 2020.

[Mas+15] Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maz-
ières. “CCFI: Cryptographically Enforced Control Flow Integrity.”
In: Conference on Computer and Communications Security – CCS.
2015, pp. 941–951. doi: 10.1145/2810103.2813676.

[Mas64] James L Massey. “Survey of residue coding for arithmetic errors.”
In: International Computation Center Bulletin 3 (1964), pp. 3–17.

[Mat+15] Sanu Mathew, Sudhir Satpathy, Vikram B. Suresh, Mark A. Anders,
Himanshu Kaul, Amit Agarwal, Steven Hsu, Gregory K. Chen, and
Ram Krishnamurthy. “340 mV-1.1 V, 289 Gbps/W, 2090-Gate
NanoAES Hardware Accelerator With Area-Optimized Encryp-
t/Decrypt GF(2 4) 2 Polynomials in 22 nm Tri-Gate CMOS.”
In: IEEE J. Solid State Circuits 50 (2015), pp. 1048–1058. doi:
10.1109/JSSC.2014.2384039.

https://doi.org/10.1109/EuroSPW51379.2020.00102
https://github.com/apple/llvm-project/blob/apple/master/clang/docs/PointerAuthentication.rst
https://github.com/apple/llvm-project/blob/apple/master/clang/docs/PointerAuthentication.rst
https://github.com/apple/llvm-project/blob/apple/master/clang/docs/PointerAuthentication.rst
https://github.com/llvm/llvm-project/commit/64dcdec60cdc3612cc5cf14dea6599b91a5f94bd
https://github.com/llvm/llvm-project/commit/64dcdec60cdc3612cc5cf14dea6599b91a5f94bd
https://doi.org/10.1109/ACCESS.2018.2881561
https://doi.org/10.1109/ACCESS.2018.2881561
https://doi.org/10.1007/11889700_15
https://www.kernel.org/doc/html/latest/arm64/memory.html
https://www.kernel.org/doc/html/latest/arm64/memory.html
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1109/JSSC.2014.2384039

Bibliography 183

[Mat+14] Sanu Mathew, Sudhir Satpathy, Vikram B. Suresh, Himanshu Kaul,
Mark A. Anders, Gregory K. Chen, Amit Agarwal, Steven Hsu,
and Ram Krishnamurthy. “340mV-1.1V, 289Gbps/W, 2090-gate
NanoAES hardware accelerator with area-optimized encrypt/de-
crypt GF(24)2 polynomials in 22nm tri-gate CMOS.” In: Symposium
on VLSI Circuits – VLSIC. 2014, pp. 1–2. doi: 10.1109/VLSIC.2014.
6858420.

[Max17] Maxim Integrated, Analog Devices. Maxim Integrated MAXQ1061
DeepCover Cryptographic Controller for Embedded Devices. https:
//www.analog.com/en/products/maxq1061.html. [accessed 2023-01-
01]. 2017.

[MV04] David A. McGrew and John Viega. “The Security and Performance
of the Galois/Counter Mode (GCM) of Operation.” In: Progress in
Cryptology – INDOCRYPT. 2004, pp. 343–355. doi: 10.1007/978-
3-540-30556-9_27.

[MM11] Marcel Medwed and Stefan Mangard. “Arithmetic logic units with
high error detection rates to counteract fault attacks.” In: Design,
Automation & Test in Europe – DATE. 2011, pp. 1644–1649. doi:
10.1109/DATE.2011.5763261.

[Med+11] Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu
Renauld, and François-Xavier Standaert. “Fresh Re-keying II: Se-
curing Multiple Parties against Side-Channel and Fault Attacks.” In:
Smart Card Research and Advanced Applications – CARDIS. 2011,
pp. 115–132. doi: 10.1007/978-3-642-27257-8_8.

[MS09] Marcel Medwed and Jörn-Marc Schmidt. “Coding Schemes for
Arithmetic and Logic Operations - How Robust Are They?” In:
Information Security Applications – WISA. 2009, pp. 51–65. doi:
10.1007/978-3-642-10838-9_5.

[Med+10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl,
and Francesco Regazzoni. “Fresh Re-keying: Security against Side-
Channel and Fault Attacks for Low-Cost Devices.” In: Progress in
Cryptology – AFRICACRYPT. 2010, pp. 279–296. doi: 10.1007/978-
3-642-12678-9_17.

[Mor+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robis-
son, and Emmanuelle Encrenaz. “Electromagnetic Fault Injection:
Towards a Fault Model on a 32-bit Microcontroller.” In: Fault Di-
agnosis and Tolerance in Cryptography – FDTC. 2013, pp. 77–88.
doi: 10.1109/FDTC.2013.9.

[Mur+20] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. “Plundervolt: Software-based
Fault Injection Attacks against Intel SGX.” In: IEEE Symposium
on Security and Privacy – S&P. 2020, pp. 1466–1482. doi: 10.1109/
SP40000.2020.00057.

https://doi.org/10.1109/VLSIC.2014.6858420
https://doi.org/10.1109/VLSIC.2014.6858420
https://www.analog.com/en/products/maxq1061.html
https://www.analog.com/en/products/maxq1061.html
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1109/DATE.2011.5763261
https://doi.org/10.1007/978-3-642-27257-8_8
https://doi.org/10.1007/978-3-642-10838-9_5
https://doi.org/10.1007/978-3-642-12678-9_17
https://doi.org/10.1007/978-3-642-12678-9_17
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057

Bibliography 184

[Mut+22] Md Rafid Muttaki, Tao Zhang, Mark M. Tehranipoor, and Farimah
Farahmandi. “FTC: A Universal Sensor for Fault Injection Attack
Detection.” In: IEEE International Symposium on Hardware Ori-
ented Security and Trust – HOST. 2022, pp. 117–120. doi: 10.1109/
HOST54066.2022.9840177.

[Mye+15] James Myers, Anand Savanth, David Howard, Rohan Gaddh, Pranay
Prabhat, and David Flynn. “8.1 An 80nW retention 11.7pJ/cycle ac-
tive subthreshold ARM Cortex-M0+ subsystem in 65nm CMOS for
WSN applications.” In: International Solid-State Circuits Conference
– ISSCC. 2015, pp. 1–3. doi: 10.1109/ISSCC.2015.7062967.

[Nak+16] Masami Nakajima, Ichiro Naka, Fumihiro Matsushima, and Tadaaki
Yamauchi. “A 20uA/MHz at 200MHz microcontroller with low power
memory access scheme for small sensing nodes.” In: Symposium on
Low-Power and High-Speed Chips and Systems – COOL CHIPS.
2016, pp. 1–3. doi: 10.1109/CoolChips.2016.7503677.

[NT] Pascal Nasahl and Niek Timmers. “Attacking AUTOSAR using
Software and Hardware Attacks.” In: escar USA.

[NCC] NCC Group. There’s A Hole In Your SoC: Glitching The MediaTek
BootROM. https://research.nccgroup.com/2020/10/15/theres-
a-hole-in-your-soc-glitching-the-mediatek-bootrom. [accessed
2023-01-01].

[New23] NewAE Technology Inc. ChipSHOUTER®. https://www.newae.com/
chipshouter. [accessed 2023-01-01]. 2023.

[NIS01] NIST FIPS. “Advanced Encryption Standard (AES).” In: Federal
Information Processing Standards Publication 197 (2001), pp. 441–
0311.

[NXP22] NXP Semiconductors. LPC54000 Series: Low Power Microcontollers
(MCUs) based on ARM® Cortex-M4 Cores with optional Cortex-
M0+ co-processor. https://www.nxp.com/products/processors-
and - microcontrollers / arm - microcontrollers / general - purpose -
mcus/lpc54000-arm-cortex-m4-:MC_1414576688124. [accessed 2023-
01-01]. 2022. url: www.nxp.com/LPC54000.

[OFl20] Colin O’Flynn. “BAM BAM!! On Reliability of EMFI for in-situ
Automotive ECU Attacks.” In: IACR Cryptol. ePrint Arch. (2020),
p. 937. url: https://eprint.iacr.org/2020/937.

[OSM02] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey.
“Control-flow checking by software signatures.” In: IEEE Trans.
Reliab. 51 (2002), pp. 111–122. doi: 10.1109/24.994926.

[Ope23a] OpenHW Group. OpenHW Group CORE-V CV32E40P RISC-V IP.
https://github.com/openhwgroup/cv32e40p. [accessed 2023-01-01].
2023.

https://doi.org/10.1109/HOST54066.2022.9840177
https://doi.org/10.1109/HOST54066.2022.9840177
https://doi.org/10.1109/ISSCC.2015.7062967
https://doi.org/10.1109/CoolChips.2016.7503677
https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom
https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom
https://www.newae.com/chipshouter
https://www.newae.com/chipshouter
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-arm-cortex-m4-:MC_1414576688124
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-arm-cortex-m4-:MC_1414576688124
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-arm-cortex-m4-:MC_1414576688124
www.nxp.com/LPC54000
https://eprint.iacr.org/2020/937
https://doi.org/10.1109/24.994926
https://github.com/openhwgroup/cv32e40p

Bibliography 185

[OPE12] OPENRISC.IO. OpenRISC 1000 Architecture Manual. https://raw.
githubusercontent.com/openrisc/doc/master/openrisc-arch-1.4-
rev0.pdf. [accessed 2023-01-01]. 2012.

[Ope23b] OpenTitan. Introduction to OpenTitan. https://opentitan.org/
documentation/index.html. [accessed 2023-01-01]. 2023.

[Oro+22] Lois Orosa, Ulrich Rührmair, Abdullah Giray Yaglikçi, Haocong
Luo, Ataberk Olgun, Patrick Jattke, Minesh Patel, Jeremie S. Kim,
Kaveh Razavi, and Onur Mutlu. “SpyHammer: Using RowHammer
to Remotely Spy on Temperature.” In: CoRR abs/2210.04084 (2022).
doi: 10.48550/arXiv.2210.04084.

[PC18] Ramiro Pareja and Santiago Cordoba. Fault injection on automotive
diagnostic protocols. https://www.riscure.com/publication/fault-
injection-automotive-diagnostic-protocols. [accessed 2023-01-01].
2018.

[Par+15] Seongwook Park, Junyoung Park, Kyeongryeol Bong, Dongjoo Shin,
Jinmook Lee, Sungpill Choi, and Hoi-Jun Yoo. “An Energy-Efficient
and Scalable Deep Learning/Inference Processor With Tetra-Parallel
MIMD Architecture for Big Data Applications.” In: IEEE Trans.
Biomed. Circuits Syst. 9 (2015), pp. 838–848. doi: 10.1109/TBCAS.
2015.2504563.

[Pat+] David Patterson, Jeremy Bennett, Cesare Garlati Palmer Dabbelt,
G. S. Madhusudan, and Trevor Mudge. Embench™: A Modern
Embedded Benchmark Suite. https://www.embench.org. [accessed
2023-01-01].

[Pau+16] Somnath Paul, Vinayak Honkote, Ryan Gary Kim, Turbo Majumder,
Paolo A. Aseron, Vaughn Grossnickle, Robert Sankman, Debendra
Mallik, Sandeep Jain, Sriram R. Vangal, James W. Tschanz, and
Vivek De. “An energy harvesting wireless sensor node for IoT systems
featuring a near-threshold voltage IA-32 microcontroller in 14nm
tri-gate CMOS.” In: Symposium on VLSI Circuits – VLSIC. 2016,
pp. 1–2. doi: 10.1109/VLSIC.2016.7573485.

[PB09] Andreas Persson and Lars Bengtsson. “Forward and Reverse Con-
verters and Moduli Set Selection in Signed-Digit Residue Number
Systems.” In: J. Signal Process. Syst. 56 (2009), pp. 1–15. doi:
10.1007/s11265-008-0249-8.

[PM16] Peter Pessl and Stefan Mangard. “Enhancing Side-Channel Analysis
of Binary-Field Multiplication with Bit Reliability.” In: Topics in
Cryptology – CT-RSA. 2016, pp. 255–270. doi: 10.1007/978-3-319-
29485-8_15.

[Pet] William W. Peterson. Error-correcting codes. M.I.T. Press [u.a.]
[Pie09] Krzysztof Pietrzak. “A Leakage-Resilient Mode of Operation.” In:

Advances in Cryptology – EUROCRYPT. 2009, pp. 462–482. doi:
10.1007/978-3-642-01001-9_27.

https://raw.githubusercontent.com/openrisc/doc/master/openrisc-arch-1.4-rev0.pdf
https://raw.githubusercontent.com/openrisc/doc/master/openrisc-arch-1.4-rev0.pdf
https://raw.githubusercontent.com/openrisc/doc/master/openrisc-arch-1.4-rev0.pdf
https://opentitan.org/documentation/index.html
https://opentitan.org/documentation/index.html
https://doi.org/10.48550/arXiv.2210.04084
https://www.riscure.com/publication/fault-injection-automotive-diagnostic-protocols
https://www.riscure.com/publication/fault-injection-automotive-diagnostic-protocols
https://doi.org/10.1109/TBCAS.2015.2504563
https://doi.org/10.1109/TBCAS.2015.2504563
https://www.embench.org
https://doi.org/10.1109/VLSIC.2016.7573485
https://doi.org/10.1007/s11265-008-0249-8
https://doi.org/10.1007/978-3-319-29485-8_15
https://doi.org/10.1007/978-3-319-29485-8_15
https://doi.org/10.1007/978-3-642-01001-9_27

Bibliography 186

[PQ03] Gilles Piret and Jean-Jacques Quisquater. “A Differential Fault
Attack Technique against SPN Structures, with Application to the
AES and KHAZAD.” In: Cryptographic Hardware and Embedded
Systems – CHES. 2003, pp. 77–88. doi: 10.1007/978-3-540-45238-
6_7.

[Pul+16] Antonio Pullini, Francesco Conti, Davide Rossi, Igor Loi, Michael
Gautschi, and Luca Benini. “A heterogeneous multi-core system-
on-chip for energy efficient brain inspired vision.” In: International
Symposium on Circuits and Systems – ISCAS. 2016, p. 2910. doi:
10.1109/ISCAS.2016.7539213.

[PULa] PULP Team. PULPino: An open-source single-core microcontroller
system. https : / / github . com / pulp - platform / pulpino. [accessed
2023-01-01].

[PULb] PULP Team & OpenHW Group. CV32E40P RISC-V IP. https:
//github.com/openhwgroup/cv32e40p. [accessed 2023-01-01].

[QEM20] QEMU. QEMU the FAST! processor emulator. https://www.qemu.
org. [accessed 2023-01-01]. 2020.

[Qiu+19a] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
“VoltJockey: Breaching TrustZone by Software-Controlled Voltage
Manipulation over Multi-core Frequencies.” In: Conference on Com-
puter and Communications Security – CCS. 2019, pp. 195–209. doi:
10.1145/3319535.3354201.

[Qiu+19b] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
“VoltJockey: Breaking SGX by Software-Controlled Voltage-Induced
Hardware Faults.” In: Asian Hardware Oriented Security and Trust
Symposium – AsianHOST. 2019, pp. 1–6. doi: 10.1109/AsianHOST
47458.2019.9006701.

[Qiu+20] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
“VoltJockey: Abusing the Processor Voltage to Break Arm Trust-
Zone.” In: GetMobile Mob. Comput. Commun. 24 (2020), pp. 30–33.
doi: 10.1145/3427384.3427394.

[Qua17] Qualcomm Technologies Inc. Pointer Authentication on ARMv8.3.
https://www.qualcomm.com/media/documents/files/whitepaper-
pointer- authentication- on- armv8- 3.pdf. [accessed 2023-01-01].
2017.

[Rah+11] Abbas Rahimi, Igor Loi, Mohammad Reza Kakoee, and Luca Benini.
“A fully-synthesizable single-cycle interconnection network for
Shared-L1 processor clusters.” In: Design, Automation & Test in Eu-
rope – DATE. 2011, pp. 491–496. doi: 10.1109/DATE.2011.5763085.

[Rao70] Thammavarapu R. N. Rao. “Biresidue Error-Correcting Codes
for Computer Arithmetic.” In: IEEE Trans. Computers 19 (1970),
pp. 398–402. doi: 10.1109/T-C.1970.222937.

https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1109/ISCAS.2016.7539213
https://github.com/pulp-platform/pulpino
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://www.qemu.org
https://www.qemu.org
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1145/3427384.3427394
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://doi.org/10.1109/DATE.2011.5763085
https://doi.org/10.1109/T-C.1970.222937

Bibliography 187

[RG71] Thammavarapu R. N. Rao and Oscar N. Garcia. “Cyclic and mul-
tiresidue codes for arithmetic operations.” In: IEEE Trans. Inf.
Theory 17 (1971), pp. 85–91. doi: 10.1109/TIT.1971.1054579.

[Ras20] Raspberry Pi Foundation. Raspberry Pi 4 Model B. https://www.
raspberrypi . org / products / raspberry - pi - 4 - model - b. [accessed
2023-01-01]. 2020.

[RG14] Pablo Rauzy and Sylvain Guilley. “Countermeasures against High-
Order Fault-Injection Attacks on CRT-RSA.” In: Fault Diagnosis
and Tolerance in Cryptography – FDTC. 2014, pp. 68–82. doi:
10.1109/FDTC.2014.17.

[Rea15] RealTimeLogic. SharkSSL/RayCrypto v2.4 crypto library bench-
marks with ARM Cortex-M3. https://realtimelogic.com/products/
sharkssl/Cortex-M3. [accessed 2023-01-01]. 2015.

[Rei+05] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Ran-
gan, and David I. August. “SWIFT: Software Implemented Fault
Tolerance.” In: International Symposium on Code Generation and
Optimization – CGO. 2005, pp. 243–254. doi: 10.1109/CGO.2005.34.

[RSG21] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. “Re-
visiting Fault Adversary Models - Hardware Faults in Theory and
Practice.” In: IACR Cryptol. ePrint Arch. (2021), p. 296. url:
https://eprint.iacr.org/2021/296.

[Ris17] Riscure. Bypassing Secure Boot using Fault Injection. https://www.
blackhat.com/docs/eu- 16/materials/eu- 16- Timmers- Bypassing-
Secure- Boot- Using- Fault- Injection.pdf. [accessed 2023-01-01].
2017.

[Ris23a] Riscure. Inspector Fault Injection. https://www.riscure.com/securi
ty-tools/inspector-fi. [accessed 2023-01-01]. 2023.

[Ris23b] Riscure. Secure Application Programming in the presence of Side
Channel Attacks. https://riscureprodstorage.blob.core.windows.
net/production/2018/11/201708_Riscure_Whitepaper_Side_Channel
_Patterns.pdf. [accessed 2023-01-01]. 2023.

[Rog04] Phillip Rogaway. “Efficient Instantiations of Tweakable Blockciphers
and Refinements to Modes OCB and PMAC.” In: Advances in
Cryptology – ASIACRYPT. 2004, pp. 16–31. doi: 10.1007/978-3-
540-30539-2_2.

[Ros+15] Davide Rossi, Francesco Conti, Andrea Marongiu, Antonio Pullini,
Igor Loi, Michael Gautschi, Giuseppe Tagliavini, Alessandro Capo-
tondi, Philippe Flatresse, and Luca Benini. “PULP: A parallel
ultra low power platform for next generation IoT applications.”
In: Hot Chips Symposium – HOT CHIPS. 2015, pp. 1–39. doi:
10.1109/HOTCHIPS.2015.7477325.

https://doi.org/10.1109/TIT.1971.1054579
https://www.raspberrypi.org/products/raspberry-pi-4-model-b
https://www.raspberrypi.org/products/raspberry-pi-4-model-b
https://doi.org/10.1109/FDTC.2014.17
https://realtimelogic.com/products/sharkssl/Cortex-M3
https://realtimelogic.com/products/sharkssl/Cortex-M3
https://doi.org/10.1109/CGO.2005.34
https://eprint.iacr.org/2021/296
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.riscure.com/security-tools/inspector-fi
https://www.riscure.com/security-tools/inspector-fi
https://riscureprodstorage.blob.core.windows.net/production/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://riscureprodstorage.blob.core.windows.net/production/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://riscureprodstorage.blob.core.windows.net/production/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1109/HOTCHIPS.2015.7477325

Bibliography 188

[Ros+14] Davide Rossi, Igor Loi, Germain Haugou, and Luca Benini. “Ultra-
low-latency lightweight DMA for tightly coupled multi-core clusters.”
In: Computing Frontiers – CF. 2014, 15:1–15:10. doi: 10.1145/
2597917.2597922.

[Ros+16] Davide Rossi et al. “193 MOPS/mW @ 162 MOPS, 0.32V to 1.15V
voltage range multi-core accelerator for energy efficient parallel and
sequential digital processing.” In: Symposium on Low-Power and
High-Speed Chips and Systems – COOL CHIPS. 2016, pp. 1–3. doi:
10.1109/CoolChips.2016.7503670.

[RND19] Thomas Roth, Dmitry Nedospasov, and Josh Datko. Wallet.fail -
Poof goes your crypto. https://wallet.fail. [accessed 2023-01-01].
2019.

[Rot12] Jeffrey Keith Rott. Intel® Advanced Encryption Standard Instruc-
tions (AES-NI). https://software.intel.com/content/www/us/en/
develop/articles/intel-advanced-encryption-standard-instructi
ons-aes-ni.html. [accessed 2023-01-01. 2012.

[Roy+16] Abhishek Roy, Peter J. Grossmann, Steven A. Vitale, and Benton H.
Calhoun. “A 1.3µW, 5pJ/cycle sub-threshold MSP430 processor in
90nm xLP FDSOI for energy-efficient IoT applications.” In: Inter-
national Symposium on Quality Electronic Design – ISQED. 2016,
pp. 158–162. doi: 10.1109/ISQED.2016.7479193.

[Rut17] Mark Rutland. Pointer authentication in AArch64 Linux. https://
www.kernel.org/doc/Documentation/arm64/pointer-authentication.
rst. [accessed 2023-01-01]. 2017.

[SBM15] Santanu Sarkar, Subhadeep Banik, and Subhamoy Maitra. “Dif-
ferential Fault Attack against Grain Family with Very Few Faults
and Minimal Assumptions.” In: IEEE Trans. Computers 64 (2015),
pp. 1647–1657. doi: 10.1109/TC.2014.2339854.

[SMS23] Marvin Saß, Richard Mitev, and Ahmad-Reza Sadeghi. “Oops..! I
Glitched It Again! How to Multi-Glitch the Glitching-Protections
on ARM TrustZone-M.” In: CoRR abs/2302.06932 (2023). doi:
10.48550/arXiv.2302.06932.

[Sch+16] David Schaffenrath, Markus Wegmann, Antonio Pullini, Davide
Schiavone, Beat Muheim, Stefan Mangard Mangard, and Mario
Werner. Patronus ASIC. http://asic.ethz.ch/2016/Patronus.html.
[accessed 2023-01-01]. 2016.

[Sch+18a] Tao B. Schardl, Tyler Denniston, Damon Doucet, Bradley C. Kusz-
maul, I-Ting Angelina Lee, and Charles E. Leiserson. “The CSI
Framework for Compiler-Inserted Program Instrumentation.” In: In-
ternational Conference on Measurement and Modeling of Computer
Systems – SIGMETRICS. 2018, pp. 100–102. doi: 10.1145/3219617.
3219657.

https://doi.org/10.1145/2597917.2597922
https://doi.org/10.1145/2597917.2597922
https://doi.org/10.1109/CoolChips.2016.7503670
https://wallet.fail
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://doi.org/10.1109/ISQED.2016.7479193
https://www.kernel.org/doc/Documentation/arm64/pointer-authentication.rst
https://www.kernel.org/doc/Documentation/arm64/pointer-authentication.rst
https://www.kernel.org/doc/Documentation/arm64/pointer-authentication.rst
https://doi.org/10.1109/TC.2014.2339854
https://doi.org/10.48550/arXiv.2302.06932
http://asic.ethz.ch/2016/Patronus.html
https://doi.org/10.1145/3219617.3219657
https://doi.org/10.1145/3219617.3219657

Bibliography 189

[Sch+10] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer.
“ANB- and ANBDmem-Encoding: Detecting Hardware Errors in
Software.” In: Computer Safety, Reliability and Security – SAFE-
COMP. 2010, pp. 169–182. doi: 10.1007/978-3-642-15651-9_13.

[SNM22a] Robert Schilling, Pascal Nasahl, and Stefan Mangard. FIPAC LLVM
Project. https://github.com/Fipac/llvm-project. [accessed 2023-
01-01]. 2022.

[SH08] Jörn-Marc Schmidt and Christoph Herbst. “A Practical Fault Attack
on Square and Multiply.” In: Fault Diagnosis and Tolerance in
Cryptography – FDTC. 2008, pp. 53–58. doi: 10.1109/FDTC.2008.10.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet:
A unified embedding for face recognition and clustering.” In: Com-
puter Vision and Pattern Recognition Conference – CVPR. 2015,
pp. 815–823. doi: 10.1109/CVPR.2015.7298682.

[SD15] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM rowham-
mer bug to gain kernel privileges.” In: Black Hat 15 (2015), p. 71.

[Sel+15] Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl.
“Precise Laser Fault Injections into 90 nm and 45 nm SRAM-cells.”
In: Smart Card Research and Advanced Applications – CARDIS.
2015, pp. 193–205. doi: 10.1007/978-3-319-31271-2_12.

[SGS23] SGS Brightsight. Brightsight Security Lab in a Box (BSLB). https:
//www.brightsight.com/test-tools. [accessed 2023-01-01]. 2023.

[Sha07] Hovav Shacham. “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86).” In: Conference
on Computer and Communications Security – CCS. 2007, pp. 552–
561. doi: 10.1145/1315245.1315313.

[Sim+16] Jaehyeong Sim, Jun-Seok Park, Minhye Kim, Dongmyung Bae,
Yeongjae Choi, and Lee-Sup Kim. “14.6 A 1.42TOPS/W deep
convolutional neural network recognition processor for intelligent
IoE systems.” In: International Solid-State Circuits Conference –
ISSCC. 2016, pp. 264–265. doi: 10.1109/ISSCC.2016.7418008.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induc-
tion Attacks.” In: Cryptographic Hardware and Embedded Systems –
CHES. 2002, pp. 2–12. doi: 10.1007/3-540-36400-5_2.

[Sof23] Software Defined Automation. Software Defined Automatio. https:
//www.softwaredefinedautomation.io. [accessed 2023-01-01]. 2023.

[sta21] stacksmashing. How the Apple AirTags were hacked. https://youtu.
be/_E0PWQvW-14. [accessed 2023-01-01]. 2021.

https://doi.org/10.1007/978-3-642-15651-9_13
https://github.com/Fipac/llvm-project
https://doi.org/10.1109/FDTC.2008.10
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1007/978-3-319-31271-2_12
https://www.brightsight.com/test-tools
https://www.brightsight.com/test-tools
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/ISSCC.2016.7418008
https://doi.org/10.1007/3-540-36400-5_2
 https://www.softwaredefinedautomation.io
 https://www.softwaredefinedautomation.io
https://youtu.be/_E0PWQvW-14
https://youtu.be/_E0PWQvW-14

Bibliography 190

[Sta+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques
Quisquater, Moti Yung, and Elisabeth Oswald. “Leakage Resilient
Cryptography in Practice.” In: Towards Hardware-Intrinsic Security
- Foundations and Practice. 2010. doi: 10.1007/978-3-642-14452-
3_5.

[Sta19] Standard Performance Evaluation Corporation. SPEC CPU 2017.
https://www.spec.org/cpu2017. [accessed 2023-01-01]. 2019.

[STM22] STMicroelectronics. STMicroelectronics STM32L476xx Datasheet.
https : / / www . st . com / resource / en / datasheet / stm32l476je . pdf.
[accessed 2023-01-01]. 2022.

[Sug11] Makoto Sugihara. “A Dynamic Continuous Signature Monitoring
Technique for Reliable Microprocessors.” In: IEICE Trans. Electron.
94-C (2011), pp. 477–486. doi: 10.1587/transele.E94.C.477.

[Sug20] Yuichi Sugiyama. Pointer Authentication Support in Ibex. https:
//mmxsrup.github.io/2020/08/31/gsoc2020- final- report.html.
[accessed 2023-01-01]. 2020.

[Sul+17] Dean Sullivan, Orlando Arias, David Gens, Lucas Davi, Ahmad-
Reza Sadeghi, and Yier Jin. “Execution Integrity with In-Place
Encryption.” In: CoRR abs/1703.02698 (2017). url: http://arxiv.
org/abs/1703.02698.

[Syn23] Synopsys Inc. High-Reliability Design: No Room for Error. https:
/ / www . synopsys . com / implementation - and - signoff / fpga - based -
design/high-reliability.html. [accessed 2023-01-01]. 2023.

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo.
“CLKSCREW: Exposing the Perils of Security-Oblivious Energy
Management.” In: USENIX Security Symposium. 2017, pp. 1057–
1074. url: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/tang.

[Tat+18] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. “Throwham-
mer: Rowhammer Attacks over the Network and Defenses.” In:
USENIX Annual Technical Conference. 2018, pp. 213–226. url:
https://www.usenix.org/conference/atc18/presentation/tatar.

[Tem+16] Adam Teman, Davide Rossi, Pascal Meinerzhagen, Luca Benini,
and Andreas Burg. “Power, Area, and Performance Optimization
of Standard Cell Memory Arrays Through Controlled Placement.”
In: ACM Trans. Design Autom. Electr. Syst. 21 (2016), 59:1–59:25.
doi: 10.1145/2890498.

[Tex22] Texas Instruments. Texas Instruments MSP430 Low-Power MCUs.
https://www.ti.com/microcontrollers-mcus-processors/microcon
trollers/msp430-microcontrollers/overview.html. [accessed 2023-
01-01]. 2022.

https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-14452-3_5
https://www.spec.org/cpu2017
https://www.st.com/resource/en/datasheet/stm32l476je.pdf
https://doi.org/10.1587/transele.E94.C.477
https://mmxsrup.github.io/2020/08/31/gsoc2020-final-report.html
https://mmxsrup.github.io/2020/08/31/gsoc2020-final-report.html
http://arxiv.org/abs/1703.02698
http://arxiv.org/abs/1703.02698
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/high-reliability.html
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/high-reliability.html
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/high-reliability.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/atc18/presentation/tatar
https://doi.org/10.1145/2890498
https://www.ti.com/microcontrollers-mcus-processors/microcontrollers/msp430-microcontrollers/overview.html
https://www.ti.com/microcontrollers-mcus-processors/microcontrollers/msp430-microcontrollers/overview.html

Bibliography 191

[The21] The kernel development community. Seccomp BPF (SECure COM-
Puting with filters). https://www.kernel.org/doc/html/latest/
userspace-api/seccomp_filter.html. [accessed 2023-01-01]. 2021.

[Tic+14] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Check-
oway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike. “Enforc-
ing Forward-Edge Control-Flow Integrity in GCC & LLVM.” In:
USENIX Security Symposium. 2014, pp. 941–955. url: https://www.
usenix . org / conference / usenixsecurity14 / technical - sessions /
presentation/tice.

[Tim21] Niek Timmers. Using Fault Injection to Turn Data Transfers into
Arbitrary Execution. https://niektimmers.com/research/2019-usi
ng-fault-injection-for-turning-data-transfers-into-arbitrary-
execution-slides-1.0.pdf. [accessed 2023-01-01]. 2021.

[TM17] Niek Timmers and Cristofaro Mune. “Escalating Privileges in Linux
Using Voltage Fault Injection.” In: Fault Diagnosis and Tolerance in
Cryptography – FDTC. 2017, pp. 1–8. doi: 10.1109/FDTC.2017.16.

[TS16] Niek Timmers and Albert Spruyt. Bypassing secure boot using fault
injection. https://www.blackhat.com/docs/eu- 16/materials/eu-
16- Timmers-Bypassing- Secure- Boot-Using-Fault- Injection.pdf.
[accessed 2023-01-01]. 2016.

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. “Controlling PC
on ARM Using Fault Injection.” In: Fault Diagnosis and Tolerance in
Cryptography – FDTC. 2016, pp. 25–35. doi: 10.1109/FDTC.2016.18.

[Tor22] Linus Torvalds. The Linux Kernel. https://kernel.org. [accessed
2023-01-01]. 2022.

[TBC19] Thomas Trouchkine, Guillaume Bouffard, and Jessy Clédière. “Fault
Injection Characterization on Modern CPUs.” In: Information Se-
curity Theory and Practice – WISTP. 2019, pp. 123–138. doi:
10.1007/978-3-030-41702-4_8.

[Tro+21] Thomas Trouchkine, Sebanjila Kevin Bukasa, Mathieu Escouteloup,
Ronan Lashermes, and Guillaume Bouffard. “Electromagnetic fault
injection against a complex CPU, toward new micro-architectural
fault models.” In: Journal of Cryptographic Engineering (2021),
pp. 1–15.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. “Differ-
ential Fault Analysis of the Advanced Encryption Standard Using
a Single Fault.” In: Information Security Theory and Practice –
WISTP. 2011, pp. 224–233. doi: 10.1007/978-3-642-21040-2_15.

[Var22] Raj Vardhman. How many Linux users are there? https://findly.
in/how-many-linux-users-are-there. [accessed 2023-01-01]. 2022.

https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://niektimmers.com/research/2019-using-fault-injection-for-turning-data-transfers-into-arbitrary-execution-slides-1.0.pdf
https://niektimmers.com/research/2019-using-fault-injection-for-turning-data-transfers-into-arbitrary-execution-slides-1.0.pdf
https://niektimmers.com/research/2019-using-fault-injection-for-turning-data-transfers-into-arbitrary-execution-slides-1.0.pdf
https://doi.org/10.1109/FDTC.2017.16
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://doi.org/10.1109/FDTC.2016.18
https://kernel.org
https://doi.org/10.1007/978-3-030-41702-4_8
https://doi.org/10.1007/978-3-642-21040-2_15
https://findly.in/how-many-linux-users-are-there
https://findly.in/how-many-linux-users-are-there

Bibliography 192

[Vas+20] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle
Morisset, and Sébastien Ermeneux. “Laser-Induced Fault Injection
on Smartphone Bypassing the Secure Boot-Extended Version.” In:
IEEE Trans. Computers 69 (2020), pp. 1449–1459. doi: 10.1109/TC.
2018.2860010.

[Vee+16] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. “Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms.” In: Conference on Computer
and Communications Security – CCS. 2016, pp. 1675–1689. doi:
10.1145/2976749.2978406.

[VHM03] Rajesh Venkatasubramanian, John P. Hayes, and Brian T. Murray.
“Low-Cost On-Line Fault Detection Using Control Flow Assertions.”
In: International Symposium on On-Line Testing and Robust System
Design – IOLTS. 2003, pp. 137–143. doi: 10.1109/OLT.2003.1214380.

[VKS11] Ingrid Verbauwhede, Dusko Karaklajic, and Jörn-Marc Schmidt.
“The Fault Attack Jungle - A Classification Model to Guide You.”
In: Fault Diagnosis and Tolerance in Cryptography – FDTC. 2011,
pp. 3–8. doi: 10.1109/FDTC.2011.13.

[Vey+12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. “Shuffling against Side-Channel Attacks:
A Comprehensive Study with Cautionary Note.” In: Advances in
Cryptology – ASIACRYPT. 2012, pp. 740–757. doi: 10.1007/978-3-
642-34961-4_44.

[WKK09] Zhen Wang, Mark G. Karpovsky, and Konrad J. Kulikowski. “Re-
placing linear Hamming codes by robust nonlinear codes results in
a reliability improvement of memories.” In: Dependable Systems and
Networks – DSN. 2009, pp. 514–523. doi: 10.1109/DSN.2009.5270297.

[Wat+20] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Pat-
terson, and Krste Asanović. The RISC-V Instruction Set Manual
Volume II: Privileged Architecture Version 1.12-draft. EECS Depart-
ment, University of California, Berkeley, Aug. 29, 2020. url: https:
//github.com/riscv/riscv-isa-manual/releases/download/draft-
20200829-c159933/riscv-privileged.pdf.

[Wat+14] Andrew Waterman, Yunsup Lee, David A. Patterson, Krste
Asanovic, Volume I User-level Isa, Andrew Waterman, Yunsup Lee,
and David Patterson. The RISC-V Instruction Set Manual. 2014.

[Wer+18] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and
Stefan Mangard. “Sponge-Based Control-Flow Protection for IoT
Devices.” In: European Symposium on Security and Privacy – Eu-
roS&P. 2018, pp. 214–226. doi: 10.1109/EuroSP.2018.00023.

https://doi.org/10.1109/TC.2018.2860010
https://doi.org/10.1109/TC.2018.2860010
https://doi.org/10.1145/2976749.2978406
https://doi.org/10.1109/OLT.2003.1214380
https://doi.org/10.1109/FDTC.2011.13
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1109/DSN.2009.5270297
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200829-c159933/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200829-c159933/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200829-c159933/riscv-privileged.pdf
https://doi.org/10.1109/EuroSP.2018.00023

Bibliography 193

[WWM15] Mario Werner, Erich Wenger, and Stefan Mangard. “Protecting the
Control Flow of Embedded Processors against Fault Attacks.” In:
Smart Card Research and Advanced Applications – CARDIS. 2015,
pp. 161–176. doi: 10.1007/978-3-319-31271-2_10.

[WP17] Nils Wiersma and Ramiro Pareja. “Safety != Security: On the
Resilience of ASIL-D Certified Microcontrollers against Fault Injec-
tion Attacks.” In: Fault Diagnosis and Tolerance in Cryptography –
FDTC. 2017, pp. 9–16. doi: 10.1109/FDTC.2017.15.

[WS88] Kent D. Wilken and John Paul Shen. “Continuous Signature Moni-
toring: Efficient Concurrent-Detection of Processor Control Errors.”
In: International Test Conference – ITC. 1988, pp. 914–925. doi:
10.1109/TEST.1988.207880.

[WS90] Kent D. Wilken and John Paul Shen. “Continuous signature moni-
toring: low-cost concurrent detection of processor control errors.” In:
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 9 (1990),
pp. 629–641. doi: 10.1109/43.55193.

[WWM11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico
Menarini. “Practical Optical Fault Injection on Secure Microcon-
trollers.” In: Fault Diagnosis and Tolerance in Cryptography – FDTC.
2011, pp. 91–99. doi: 10.1109/FDTC.2011.12.

[WP13] Hongjun Wu and Bart Preneel. “AEGIS: A Fast Authenticated
Encryption Algorithm.” In: Selected Areas in Cryptography – SAC.
2013, pp. 185–201. doi: 10.1007/978-3-662-43414-7_10.

[Wu+15] May Wu, Ravi Iyer, Yatin Hoskote, Steven Zhang, Julio Zamora-
Esquivel, German Fabila Garcia, Ilya Klotchkov, and Mukesh Bhar-
tiya. “Design of a low power SoC testchip for wearables and IoTs.”
In: Hot Chips Symposium – HOT CHIPS. 2015, pp. 1–27. doi:
10.1109/HOTCHIPS.2015.7477326.

[ZB19] Florian Zaruba and Luca Benini. “The Cost of Application-Class
Processing: Energy and Performance Analysis of a Linux-Ready 1.7-
GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology.” In: IEEE
Trans. Very Large Scale Integr. Syst. 27 (2019), pp. 2629–2640. doi:
10.1109/TVLSI.2019.2926114.

[ZS13] Mingwei Zhang and R. Sekar. “Control Flow Integrity for COTS
Binaries.” In: USENIX Security Symposium. 2013, pp. 337–352. url:
https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/presentation/Zhang.

[Zha+16] Yiqun Zhang, Kaiyuan Yang, Mehdi Saligane, David T. Blaauw,
and Dennis Sylvester. “A compact 446 Gbps/W AES accelerator
for mobile SoC and IoT in 40nm.” In: Symposium on VLSI Circuits
– VLSIC. 2016, pp. 1–2. doi: 10.1109/VLSIC.2016.7573553.

https://doi.org/10.1007/978-3-319-31271-2_10
https://doi.org/10.1109/FDTC.2017.15
https://doi.org/10.1109/TEST.1988.207880
https://doi.org/10.1109/43.55193
https://doi.org/10.1109/FDTC.2011.12
https://doi.org/10.1007/978-3-662-43414-7_10
https://doi.org/10.1109/HOTCHIPS.2015.7477326
https://doi.org/10.1109/TVLSI.2019.2926114
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://doi.org/10.1109/VLSIC.2016.7573553

Bibliography 194

[ZPZ08] Zhengdao Zhang, Zhumiao Peng, and Zhiping Zhou. “The Study
of Intrusion Prediction Based on HsMM.” In: Asia-Pacific Services
Computing Conference – APSCC. 2008, pp. 1358–1363. doi: 10.
1109/APSCC.2008.107.

[Zha+14] Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-Wei
Hsu, Chong Kuan Chen, and Shiuhpyng Shieh. “IoT Security: Ongo-
ing Challenges and Research Opportunities.” In: International Con-
ference on Service Oriented Computing and Applications – SOCA.
2014, pp. 230–234. doi: 10.1109/SOCA.2014.58.

[Zha+20] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.
“SonicBOOM: The 3rd Generation Berkeley Out-of-Order Machine.”
In: Fourth Workshop on Computer Architecture Research with RISC-
V (2020).

[ZHA15] Wenfeng Zhao, Yajun Ha, and Massimo Alioto. “Novel Self-Body-
Biasing and Statistical Design for Near-Threshold Circuits With
Ultra Energy-Efficient AES as Case Study.” In: IEEE Trans. Very
Large Scale Integr. Syst. 23 (2015), pp. 1390–1401. doi: 10.1109/
TVLSI.2014.2342932.

[ZAV04] Haissam Ziade, Rafic A. Ayoubi, and Raoul Velazco. “A Survey on
Fault Injection Techniques.” In: Int. Arab J. Inf. Technol. 1 (2004),
pp. 171–186. url: http://www.iajit.org/ABSTRACTS-2.htm%5C#04.

[Zim] Reto Zimmermann. “Efficient VLSI Implementation of Modulo
(2n ± 1) Addition and Multiplication.” In: Symposium on Computer
Arithmetic – ARITH 1999, pp. 158–167. doi: 10.1109/ARITH.1999.
762841.

https://doi.org/10.1109/APSCC.2008.107
https://doi.org/10.1109/APSCC.2008.107
https://doi.org/10.1109/SOCA.2014.58
https://doi.org/10.1109/TVLSI.2014.2342932
https://doi.org/10.1109/TVLSI.2014.2342932
http://www.iajit.org/ABSTRACTS-2.htm%5C#04
https://doi.org/10.1109/ARITH.1999.762841
https://doi.org/10.1109/ARITH.1999.762841

	Title Page
	Affidavit
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Introduction
	Problem Statement
	Contribution and Outline

	Fault Attacks and Countermeasures
	Physical Fault Induction Techniques
	Software-Induced Fault Attacks
	Fault Models
	Fault Exploitation
	Fault Attacks on Cryptographic Implementations
	Exploiting Faults on Non-Cryptographic Software

	Countermeasures Against Fault Attacks
	Duplication-Based Countermeasures
	Error Detection Codes
	Fresh Re-keying to Counteract Fault Attacks

	Control-Flow, Control-Flow Attacks, and Control-Flow Integrity
	Control-Flow Attacks
	Software-Based Control-Flow Attacks
	Fault-Based Control-Flow Attacks

	Control-Flow Integrity
	Software cfi Protection Schemes
	Fault cfi Protection Schemes

	Energy-Efficient Encryption with Algorithmic Fault Protection of IoT End-Nodes
	Background
	Threat Model
	Energy and Security Requirements of IoT End-Nodes
	Leakage-Resilient Encryption with Re-Keying and a 2PRG
	Re-Keying Function

	Isap - Lightweight Authenticated Encryption
	soc Architecture
	Cluster-Coupled Accelerator Engines
	Hardware Encryption Engine

	Experimental Evaluation
	System-on-Chip Operating Modes
	HWCRYPT Performance and Power Evaluation
	Comparison with State-of-the-Art

	Use Cases
	Secure Autonomous Aerial Surveillance
	Local Face Detection with Secured Remote Recognition
	Seizure Detection and Secure Long-Term Monitoring

	State-of-the-Art and Related Work
	Low-Power Encryption Hardware ip
	iot End-Node Architectures

	Conclusion

	FIPAC: Control-Flow Protection with ARM Pointer Authentication
	ARM Pointer Authentication
	Threat Model and Attack Scenario
	Threat Model
	Attack Scenario
	cfi against Software- and Fault-Based Control-Flow Attacks

	Design of FIPAC
	Signature-Based Control-Flow Integrity
	State Updates with ARM Pointer Authentication
	Placement of Checks

	Implementation
	System Implementation
	cfi Primitives
	Protection of Control-Flow Instructions
	Toolchain

	Evaluation
	Security Evaluation
	Security Comparison
	Functional Evaluation
	Performance Evaluation

	Example Exploits
	Data Protection with FIPAC
	Discussion
	FIPAC Hardware Requirements
	FIPAC on ARMv8.3-A
	FIPAC on Other Architectures
	Dynamic Key Handling
	Instruction Granular Protection
	Compatibility

	Conclusion

	System Call Flow Protection and Dynamic CFI
	Background
	Linux and the System Call Interface

	Threat Model and Attack Scenario
	Attack Scenario
	FIPAC Intra-Basic Block Protection

	Design of SFP
	Requirements for System Call Protection
	System Call Protection
	Dynamic Instrumentation

	Implementation
	Toolchain
	Kernel Support

	Evaluation
	Security Evaluation
	Functional Evaluation
	Performance Evaluation

	Discussion
	Dynamic System Call Instrumentation
	cfi Checking Policy Extension
	Compatibility

	Related Work
	Conclusion

	Secure Comparisons and Conditional Branches for CFI
	Threat Model and Related Work
	Threat Model
	Conditional Branch Protection via Re-checking
	Conditional Branches in the Context of cfi

	Protecting Conditional Branches against Fault Attacks
	Requirements for cfi Protection Scheme

	Protected Comparisons with AN-Codes
	Protected Equal and Not-Equal Condition Computation
	Parameter Selection

	Implementation and Evaluation
	Implementation
	Cost Analysis
	Performance Evaluation

	Security Analysis
	Compatibility
	Compatibility with FIPAC
	Compatibility with scfp

	Conclusion

	Secure Memory Accesses in the Presence of Fault Attacks
	Background of Memory Access
	ANB-Codes for Memory Access Protection
	ARM Pointer Authentication

	Threat Model and Attack Scenario
	Threat Model
	Attack Scenario

	Pointer Protection with Residue Codes
	Overview
	Pointer Layout and Residue-Code Selection
	Pointer Operations

	Evolved Memory Access Protection
	Overview
	The Linking Approach
	Memory-Mapped I/O

	Architecture
	New Instructions
	Hardware
	Software

	Evaluation
	Future Work

	Conclusion

	Protected Memory Accesses in the Virtual Memory Domain
	Page-based Virtual Memory
	Threat Model and Attack Scenario
	Threat Model
	Faults on Virtual Memory
	Requirements for Protected Virtual Memory Accesses

	Design of SecWalk
	Protected Pointers and Memory Accesses
	Secure Page Table Walk
	tlb Design
	Page Directory Setup
	Shared Memory Support

	Implementation
	Hardware Implementation
	Toolchain Implementation

	Evaluation
	Hardware Evaluation
	Performance Evaluation
	Security Evaluation

	Related Work
	Conclusion

	Conclusion and Outlook
	Outlook

	List of Contributions
	Main Publications
	Contributed Publications

	Bibliography

