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We live in a connected world
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Attack Setup
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Attacker:

Has physical access to device
Has remote access to device
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Contribution

A & :
Data Protection:
Encryption with fault-protection
on algorithmic level

Energy-efficient encryption for
IoT

Control-Flow:
Software-based CFI against
faults

Hardening the syscall interface

Protected conditional branches

Memory Accesses:
Pointer encoding and linked
memory access

Secure page table walk
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Data Protection
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Motivation

Encryption is a major building block for secure systems

Exposed devices require dedicated countermeasures to protect against
physical attacks

Requires additional logic → reduces energy-efficiency
Important for energy-constraint IoT end-nodes

Can we provide energy-efficient encryption that is fault-protected by
design?
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An IoT Endpoint System-on-Chip for Secure
and Energy-Efficient Near-Sensor Analytics

Francesco Conti, Robert Schilling, Pasquale Davide Schiavone, Antonio Pullini, Davide Rossi,

Frank Kagan Gürkaynak, Michael Muehlberghuber, Michael Gautschi, Igor Loi, Germain Haugou, Stefan Mangard,

and Luca Benini. An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics. IEEE

Trans. Circuits Syst. I Regul. Pap. 64-I (2017), pp. 2481–2494
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High Speed ASIC Implementations of
Leakage-Resilient Cryptography

Robert Schilling, Thomas Unterluggauer, Stefan Mangard, Frank K. Gürkaynak, Michael Muehlberghuber, and

Luca Benini. High speed ASIC implementations of leakage-resilient cryptography. 2018 Design, Automation &

Test in Europe Conference & Exhibition, DATE 2018, Dresden, Germany, March 19-23, 2018. IEEE, 2018,

pp. 1259–1264
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Fresh Re-keying to counteract Fault Attacks

Break the assumptions of DFA attacks → use a new key for every
encryption

Use a re-keying function that always computes a fresh session key based
on a nonce

c  E/DgnK pk*
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Fulmine and HWCRYPT

Fulmine SoC in UMC 65nm LL 1P8M
4-core RISC SoC with two hardware accelerators
HWCE Convolutional accelerator engine
HWRYPT Cryptographic accelerator engine

Polymul + AES-2PRG (100 pJ/b, 67 Gbit/s/W)
ISAP (70 pJ/b, 100 Gbit/s/W)
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Secure Face Detection
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Local face detection with offline face recognition

After detection → image is encrypted and sent to the host

24× speedup and 13× reduction in energy

5.74 pJ/op efficiency with on equivalent RISC operations
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Summary

>
Energy-efficient encryption possible on the
architectural level

Without aggressive voltage and technology scaling
No dedicated countermeasures needed due to
algorithmic protection

End-to-end applications show the efficiency of
tightly-coupled hardware accelerators
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Control-Flow Integrity and Friends
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Motivation

a

b c

d e

f g

Why do we need another CFI countermeasure?

Combined software- and fault attacks bypass
existing schemes
Strong CFI requires hardware support → not
possible for commodity systems
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FIPAC: Thwarting Fault- and
Software-Induced Control-Flow Attacks with

ARM Pointer Authentication

Robert Schilling, Pascal Nasahl, and Stefan Mangard. FIPAC: Thwarting Fault- and Software-Induced

Control-Flow Attacks with ARM Pointer Authentication. Constructive Side-Channel Analysis and Secure Design -

13th International Workshop, COSADE 2022, Leuven, Belgium, April 11-12, 2022, Proceedings. Springer, 2022,

pp. 100–124

10



Design of FIPAC

ADR x1, #4
PACIA x28, x1

ADR x1, #4
PACIA x28, x1

ADR x1, #4
PACIA x28, x1

MOV x8, #sig

EOR x28, x28, x8

#BB1

#BB2 #BB3

S=S1

S=S2 S=S3

7

S2 != S3 → State collision

Insert a justifying signature
Sig = S2 ⊕ S3

✓ADR x1, #4
PACIA x28, x1

S=S4

Cryptographically enforced CFI with
ARM Pointer Authentication

Every basic block updates a global
CFI state with PAC
Unique CFI state per basic block

Enforcement of the control-flow graph
at basic-block level

Checks at different locations
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Checking Strategy

Where to place a check?

More checks → better detection latency ✓
More checks → more overhead p

3 strategies implemented

1. Single check at program end
2. Check at every basic block
3. Check at function end

Custom strategies possible
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Implementation and Summary

. Open source LLVM toolchain1 to automatically instrument arbitrary
C-code with state updates and checks

7 Runtime evaluation on RaspberryPi with PAC emulation

Runtime overhead on SPEC2017

19 %: Single check at program end
63 %: Check on every basic block
22 %: Check on function end

1https://github.com/Fipac/Fipac
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Can we extend the scope of
protection of FIPAC?



Syscalls are Everywhere

mov w8 , #SYS_NR
s v c
. . .

ø I

7 Û
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SFP: Providing System Call Flow Protection
against Software and Fault Attacks

Robert Schilling, Pascal Nasahl, Martin Unterguggenberger, and Stefan Mangard. SFP: Providing System Call Flow

Protection against Software and Fault Attacks. CoRR abs/2301.02915 (2023)
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Requirements for System Call Protection

1. Prevent an attacker from manipulating the system call number

2. Ensure that a system call cannot be skipped

3. Ensure the system call dispatcher in the kernel executes the correct
syscall function
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Design Idea of SFP

Link the system call to the cryptographic CFI state

Bind the syscall to the CFI state ahead of its execution

Dynamically verify the correct syscall function in the kernel

Perform CFI checks when entering and leaving the kernel
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SFP Design Summary

Check(S, SB)
...

Compute SigB2
Patch(S, SigB2)
Check(S, SB2)

Syscall exit
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...

Compute SigC2
Patch(S, SigC2)
Check(S, SC2)

Syscall exit

Update(S, A)

A
Patch(S, SigC1)

Syscall C

...
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E

✗

✓
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Implementation

Modified C standard library

Patch all system call invocations with patch sequence
Manual process with source code modifications

Modified Linux kernel

CFI checking policy
System call protection (2nd stage linking)
Dynamic CFI instrumentation
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Runtime Overhead for SPEC2017
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SFP increases the runtime overhead by 1.8 % on top of FIPAC

From 18.8 % (FIPAC) to 20.6 % (with SFP)
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What about branches?
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Limitations of Existing CFI Protection Schemes

a

b c

d e

f g

CFI protects the control-flow graph (CFG)

All branch successors are within the CFG

Point when data touches control-flow control remains
unprotected

Conditional branches are unprotected

Critical decisions depend on conditional branches
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Securing Conditional Branches in the
Presence of Fault Attacks

Robert Schilling, Mario Werner, and Stefan Mangard. Securing conditional branches in the presence of fault

attacks. 2018 Design, Automation & Test in Europe Conference & Exhibition, DATE 2018, Dresden, Germany, March

19-23, 2018. IEEE, 2018, pp. 1586–1591
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Generic Protected Conditional Branches

Multiple attack vectors to bypass conditional branches

1. Faulting the operands → Add redundancy to x and y (AN-codes)
2. Faulting the comparison → Encoded comparison in software
3. Faulting the branch → Link the redundant condition value with the

CFI state

CMP BR
1

Standard Compare & Branch

(PC1, S1)
(PC2, S2)x

y
P=

xc

yc

P=

Enc.
CMP

xc

yc

P
P=

Constant

n

CFI Update
(PC1, S1)
(PC2, S2)
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Integration and Tooling

Protected comparison operations with AN-codes for all predicates

. LLVM compiler integration in the middle-end

Target independent encoded comparison instrumentation
Only CFI state update is target dependent

Hardware prototype using on ARM-based software-centric CFI scheme

Prototype secure boot application with negligible runtime overhead

Generic approach compatible with FIPAC
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Memory Access Protection
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Fault Attacks on Memory Accesses

Memory

Secret

ptr
E

Faulting the pointer redirects
the memory access

E

Faulting the bus access
the memory access
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Fault Attacks on Memory Accesses

Memory
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ptr

E

Faulting the pointer redirects
the memory access

E

Faulting the bus access
the memory access
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Pointing in the Right Direction - Securing
Memory Accesses in a Faulty World

Robert Schilling, Mario Werner, Pascal Nasahl, and Stefan Mangard. Pointing in the Right Direction - Securing

Memory Accesses in a Faulty World. Proceedings of the 34th Annual Computer Security Applications Conference,

ACSAC 2018, San Juan, PR, USA, December 03-07, 2018. ACM, 2018, pp. 595–604
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Multi-Residue Encoded Pointers

Reduce address space to 40-bits

Upper 24-bits store redundancy information and MMIO indicator bit

Multi-residue code with 5-bit Hamming distance

63 55 51 46 43 4039 0

r4,p r3,p r2,p r1,p r0,p

M
M

IO p

RISC-V instruction set extension for encoded pointer arithmetic
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Secure Memory Access

Pointers are protected but memory access still can be redirected

Establish a link between the redundant address and redundant data

Perform a linking overlay on top of encoded data

Unlinking operation only successful when using the correct pointer and
correct memory access

Translate addressing errors to data errors

Byte-granular XOR with compressed pointer → Support for byte-granular
data access
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Implementation and Results

Ó Hardware implementation on 32-bit CV32E40P RISC-V Processor

Hardware extension with instructions for encoded pointer arithmetic
and linked memory accesses

. LLVM compiler integration

Automatically protects all pointer arithmetic and memory accesses

Code overhead:
9.9 % on average

Runtime overhead:
6.3 % on average
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What about larger systems?
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Fault Attacks on the Page Table Walk
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Fault Attacks on the Page Table Walk
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SecWalk: Protecting Page Table Walks
Against Fault Attacks

Robert Schilling, Pascal Nasahl, Stefan Weiglhofer, and Stefan Mangard. SecWalk: Protecting Page Table Walks

Against Fault Attacks. IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2021, Tysons

Corner, VA, USA, December 12-15, 2021. IEEE, 2021, pp. 56–67

27



Secure Page Table Walk

Translates virtual address to physical → Used for the memory access

Virtual address grouped to 27-bit VPN and 12-bit page offset

63 0
Redundancy VPN[2] VPN[1] VPN[0] PO

25 9 9 9 12

Page table walk translates 27-bit VPN to a 44-bit PPN

Page offset remains untranslated and added to the PPN

Idea: Faulty translations detectable through redundancy properties
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Protected Page Table Walk
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Protected Page Table Entries

Encode PPN with a multi-residue code

Unused PTE bits store redundancy information

Still access to parts of the PPN for the page table walk

63 0
Res Redundancy PPN[2] PPN[1] PPN[0] RSW Status Bits
2 25 9 9 9 2 8
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Protected Page Table Walk
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Implementation and Results
Ó Hardware implementation on 64-bit CVA6 RISC-V Processor

Hardware page table walker and custom instructions for linking

. Compiler integration

Re-use the compiler from before

ò Operating system integration to seL4

Creates linked page-directory on start using custom instructions
Microbenchmark:

11.05 % code overhead
7.17 % runtime overhead

OS integration to seL4:
13.1 % code overhead
11.6 % runtime overhead
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Conclusion
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Summary

Protection of different subsystems against fault attacks

Data protection: Energy-efficient encryption with Fulmine
Control-flow: FIPAC, SFP, Conditional branches
Memory accesses: Pointer encoding and linked memory accesses,
SecWalk

Transparent hardware changes do not influence the software

Integrated toolchains support adoption on larger scale

Research prototypes show reasonable overheads
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Outlook

Å

ø Integration to larger systems

Selectively protect parts of the system, i.e., a TEE
Useful for confidential computing platforms

Ó Use formal methods with fault injection

Generate proofs to state the level of security

Data protection and computation

Attestation and Licensing
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The PhD in Numbers

¢

18 (co-)authored papers in total
7 papers in this thesis
Contributed to 2 lectures

Digital System Design (since WT2017)
Computer Organization (ST2019) → Computer
Organization and Networks (since WT2019)

Supervised 13 student projects
2 internships, 3 bachelor theses
3 master projects
5 master theses
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