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ABSTRACT
Fault injection (FI) is a powerful attack methodology allowing an
adversary to entirely break the security of a target device. As finite-
state machines (FSMs) are fundamental hardware building blocks
responsible for controlling systems, inducing faults into these con-
trollers enables an adversary to hijack the execution of the inte-
grated circuit. A common defense strategy mitigating these attacks
is to manually instantiate FSMs multiple times and detect faults
using a majority voting logic. However, as each additional FSM in-
stance only provides security against one additional induced fault,
this approach scales poorly in a multi-fault attack scenario.

In this paper, we present SCFI: a strong, probabilistic FSM pro-
tection mechanism ensuring that control-flow deviations from the
intended control-flow are detected even in the presence of multiple
faults. At its core, SCFI consists of a hardened next-state function
absorbing the execution history as well as the FSM’s control sig-
nals to derive the next state. When either the absorbed inputs, the
state registers, or the function itself are affected by faults, SCFI
triggers an error with no detection latency. We integrate SCFI into
a synthesis tool capable of automatically hardening arbitrary un-
protected FSMs without user interaction and open-source the tool.
Our evaluation shows that SCFI provides strong protection guar-
antees with a better area-time product than FSMs protected using
classical redundancy-based approaches. Finally, we formally verify
the resilience of the protected state machines using a pre-silicon
fault analysis tool.

CCS CONCEPTS
• Security and privacy→Hardware attacks and countermea-
sures.
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1 INTRODUCTION
Fault attacks are active, physical attacks that allow an adversary to
manipulate the execution of a digital circuit. In these attacks, one
or multiple faults are injected into certain gates, wires, or registers
of a logical hardware block. The effects of these faults, which com-
prise transient bit-flips or permanent stuck-at effects, manipulate

the execution of the hardware block and an adversary can exploit
this malfunctional behavior [23]. Finite-state machines (FSMs) are
lucrative fault targets, as these fundamental hardware blocks are
responsible of controlling systems and their datapaths. By hijacking
the execution flow of the FSM using faults, an adversary can ma-
nipulate the FSM to enter states which cannot be reached from the
current state. Hence, due to the severity of these attacks, security-
sensitive state machines need dedicated protection against faults.

A common fault defense strategy is to encode the FSM states
such that they are separated with a certain Hamming Distance [1,
4, 12]. However, this can only mitigate attackers aiming to induce
faults into the state registers. Other defense strategies [6] introduce
monitors which check whether the conducted state transition is in
the list of valid state transitions. Leveugle et al. [11] dynamically
verifies that the state transitions stay within the intended execution
flow, which is determined during synthesis using the control-flow
graph (CFG) of the FSM. There, on each state transition, a signature
is derived, and a monitor checks whether the signature matches
the predetermined signature of the CFG. However, faults induced
either into the next-state logic or into the FSM’s control signals still
enable adversaries to redirect the control-flow within the bounds
of the CFG. Moreover, the fault detection latency of monitor-based
schemes is high and the error coverage is often insufficient [18].

Redundantly instantiating the next-state logic and comparing
the resulting states typically requires manual effort by the RTL
designer. Moreover, this approach requires an additional redundant
next-state logic for each additional fault protection layer. Hence,
the area overhead of redundancy-based protection mechanisms
scales poorly, especially when considering multi-fault attacks, e.g.,
quadruple laser fault injection [2].

Contribution
In this paper, we introduce SCFI, a scalable mitigation approach
probabilistically protecting the control-flow of finite-state machines
against multi-fault attacks. SCFI ensures that any control-flow de-
viation from the intended control-flow is detected with a high
probability by substituting the unprotected next-state logic of the
controller with a fault-hardened next-state logic. Internally, this
hardened logic absorbs the control signals and the execution history
and only generates a valid next state when these inputs are not
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tampered by faults. When either the control signals, the current
state (i.e., the execution history), or the next-state logic itself is
targeted by faults, the logic ensures that these faults corrupt the
next state output to a degree which can be detected. To ensure this
behavior, SCFI uses a lightweight diffusion layer, which is based on
a maximum distance separable (MDS) matrix multiplication. We in-
tegrate SCFI into the Yosys synthesis suite to automatically protect
arbitrary FSMs against fault attacks without any user interaction
and open-source1 the modified toolchain. In order to evaluate the
area and timing overhead, we synthesized several FSMs used in
an industry-driven open-source project with our modified syn-
thesis suite. Our comparison with a redundancy-based protection
approach of the FSM’s next-state logic shows that SCFI scales better
in terms of area-time product for different fault protection levels
than classical redundancy-based protection approaches. Finally, we
utilize a pre-silicon fault analysis tool to formally verify the fault
resiliency of the hardened FSMs.

2 BACKGROUND
This section provides fundamental background on fault attacks and
finite-state machines required for the subsequent chapters.

2.1 Fault Attacks
Fault attacks are commonly used to break the security of embed-
ded devices. In these physical attacks, one or multiple faults are
induced into the circuit, causing several side effects at the electrical
level. These electrical effects comprise timing violations and other
disturbances [17] and they influence the execution of the target. By
exploiting the effects of a fault, an adversary is capable of hijacking
the control-flow of software [15, 20, 21], bypassing security mea-
sures, such as secure-boot [5, 22], or extracting secret keys used by
cryptographic primitives [3, 7].

Originally, fault attacks were pure physical attacks requiring
an adversary to have physical access to the target device. To in-
duce a fault, attackers interrupt the supply voltage or the clock
signal, decapsulate the chip and shoot with a laser directly into the
die, or use electromagnetic pulses [10]. However, recent publica-
tions, such as Plundervolt [13], CLKSCREW [19], or VoltJockey [16],
demonstrated that faults also could be induced remotely in software,
increasing the attack surface of fault attacks even more.

In general, a fault 𝑓 ∈ 𝐹 is described using the set 𝐾 = {𝑒, 𝑠, 𝑡}
where 𝑒 is the effect of a fault, 𝑠 the spatial, and 𝑡 the temporal
dimension of the fault. Typically, the fault effect 𝑒 comprises tran-
sient, i.e., bit-flips, or stuck-at effects. The spatial 𝑠 and temporal
𝑡 dimensions of a fault describe where (which gate or wire) and
when (which clock cycle) a fault is induced. The set 𝐹 consists of all
possible fault combinations and an adversary typically can inject
up to a certain number of faults into the circuit.

2.2 Finite-State Machines
Finite-state machines (FSMs) are sequential circuits responsible
for controlling systems and their datapaths. Internally, an FSM
maintains a finite set of states, and a state-transition into the next
state that is controlled by the input signals, i.e., the control signals
and the current state. The outputs of a Mealy-type FSM are defined
1Repository link will be provided after paper acceptance.

by the current state and the input signals, and the outputs of a
Moore-type FSM only depend on the current state.
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Figure 1: General structure of a state machine.

As depicted in Figure 1, an FSM is described using the 5-tuple
{𝑆, 𝑋,𝑌, 𝜙, _}. The |𝑆 | states of an FSM are represented as a 𝑠-bit
symbol 𝑆 , where the size 𝑠 needs to be at least 𝑠 = ⌈𝑙𝑜𝑔2 ( |𝑆 |)⌉ bits
to comprise the entire state space. Furthermore, the FSM consists of
𝑛-bit control signals𝑋 and𝑚-bit output signals𝑌 . The FSM uses the
next-state function 𝑆𝑁 = 𝜙 (𝑋, 𝑆𝐶 ) to derive the next state 𝑆𝑁 from
the current state 𝑆𝐶 and the control signals𝑋 . For a Mealy machine,
the output 𝑌 depends on the current state 𝑆𝐶 and the input signals
𝑋 and is described using the output function 𝑌 = _(𝑋, 𝑆𝐶 ). The
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Figure 2: Control-flow graph of an FSM.

execution-flow of an FSM can be described using a directed graph,
as shown in Figure 2. This graph, which is also called a control-flow
graph (CFG), comprises all valid transitions 𝑡 ∈ 𝐶𝐹𝐺 the FSM can
perform. A valid transition is defined by the valid {𝑆𝐶 , 𝑋 } pairs and
the given next-state function 𝜙 .

3 THREAT MODEL
We consider a powerful adversary capable of injecting 𝑁 − 1 faults
in different clock cycles and at different locations into the device
under attack. These faults can be induced independently of the
used fault methodology, i.e., we consider local and remote injecting
techniques. Similar to related work, we model the impact of a fault
as a transient, i.e., a bit-flip, or a permanent, i.e., a stuck-at, effect.
The spatial dimension of the induced fault comprises wires as well
as combinational and sequential elements of the logic.

3.1 Attacker Description
Within this threat model, an attacker aims to hijack the execution-
flow of a security-sensitive state machine in the circuit. Based on

2
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Figure 3: Mapping of valid and invalid input tuples to a valid
or invalid next state.

the general description of a state machine provided in Section 2.2,
the adversary can achieve this goal by inducing faults into the next-
state logic. A fault into the next-state logic allows an adversary to
hijack the execution flow of the FSM and to indirectly change the
output signals. This fault target can be modeled using the modified
next-state logic 𝑆𝑁 = 𝜙 (𝑆𝐶 , 𝑋, 𝐹𝑁 ), where 𝐹𝑁 describes one or
multiple faults. Based on this formula, an adversary can induce
faults into different fault targets (FT):
FT1 State Registers: A fault into the state registers allows the
adversary to arbitrarily redirect the control-flow of the FSM inside
𝑡 ∈ 𝐶𝐹𝐺 or outside 𝑡 ∉ 𝐶𝐹𝐺 the control-flow graph. For the CFG
in Figure 2, the adversary could flip bits in the state registers to
directly jump from 𝑆0 to 𝑆3.
FT2 Control Signals: By inducing bit-flips into the control signals,
the adversary can manipulate the control-flow of the FSM within
the borders of the CFG. For example, a fault into the control signal
𝑥0 or into the comparison logic can hijack the execution 𝑆0 → 𝑆1
to 𝑆0 → 𝑆2 in Figure 2.
FT3 Next-State Logic: When directly targeting the logic of the next-
state function, the adversary can arbitrarily redirect the control-
flow of the FSM within or outside the bounds of the CFG.

3.2 Goal - Fault Secure FSM
In order to comprehensively protect the control-flow of finite-
state machines against fault attacks, dedicated fault countermea-
sures must consider all fault targets FT1, FT2, and FT3. The goal is
that a fault-protected controller 𝐹𝑆𝑀𝐹 influenced by faults detects
any control-flow deviations from the control-flow of an identical
copy 𝐹𝑆𝑀𝐹 which is not affected by faults, i.e., 𝜙𝐹 (𝑆, 𝑋, 𝐹𝑁 ) =?
𝜙𝐹 (𝑆, 𝑋, 0).

4 DESIGN
To comprehensively protect finite-state machines against control-
flow hijacks, with SCFI, we maintain the integrity of the control-
flow by introducing a fault-hardened next-state logic 𝜙𝐹𝐻 . This
hardened next-state logic prevents that a fault into FT1, FT2, or
FT3 enables the adversary to redirect the control-flow inside or
outside the boundaries of the CFG. This function 𝜙𝐹𝐻 is internally
constructed using a multi-input signature register (MISR) and it
links the entire execution history in a compressed format to detect
control-flow deviations. To enter the next valid state, the execution
history as well as the control signals need to be genuine. As shown
in Figure 3, 𝜙𝐹𝐻 maps a valid tuple {𝑋, 𝑆𝐶 }, which includes the exe-
cution history in 𝑆𝐶 , into a valid next state 𝑆𝑁 . When an adversary
induces faults into FT1...FT3, i.e., either into the tuple {𝑋, 𝑆𝐶 } or into

the 𝜙𝐹𝐻 logic, 𝜙𝐹𝐻 forces the FSM into a non-escapable terminal
error state. Figure 4 depicts the transformation of an unprotected

unique c a s e ( SC )
S0 : beg in
SN = S0 ;
i f ( x0 )
SN = S1 ;
e l s e i f ( x1 )
SN = S2 ;

end
S1 : beg in
SN = S1 ;
i f ( x2 )
SN = S3 ;

end

unique ca s e ( SC )
S0 : beg in
SN = 𝜙𝐹𝐻 (𝑆𝐶,𝑋 ) ;

end
S1 : beg in
SN = 𝜙𝐹𝐻 (𝑆𝐶,𝑋 ) ;

end
ERROR : beg in
SN = ERROR ;

end
d e f a u l t : beg in
f sm_ a l e r t = e r r _ s i g n a l ;
SN = ERROR ;

end

Figure 4: Unprotected and protected next-state logic of an
example FSM.

next-state logic of an example FSM into a protected version. The
unprotected FSM is susceptible to faults, as a single fault into the
state registers, the comparison logic, or the control signals can
change the execution-flow of the FSM. SCFI closes these attack vec-
tors by deriving the next state using 𝜙𝐹𝐻 . If the current state, the
control signals, or the next-state logic is tampered with a fault, 𝜙𝐹𝐻
produces an invalid state and enters the non-escapable default error
state. To achieve this protection degree, the next-state function and
its inputs and outputs need to fulfill requirements R1 to R3:
R1 Encoded Control Signals: All control signals 𝑋 are encoded
to 𝑋𝑒 . The encoding needs to guarantee that the attacker needs at
least 𝑁 bit-flips to manipulate a valid control-signal codeword to
another valid codeword.
R2 Encoded States: All states 𝑆 are encoded to 𝑆𝑒 . Similar
to the control signals, the encoding needs to guarantee a minimum
Hamming Distance between valid states of 𝑁 .
R3 Hardened Next-State Function: The hardened next-state
function 𝜙𝐹𝐻 generates an encoded next state 𝑆𝑁𝑒 fulfilling R2
for each encoded control signal and encoded current state tuple
{𝑆𝐶𝑒 , 𝑋𝑒 }. Moreover, 𝜙𝐹𝐻 needs to ensure that up to 𝑁 −1 bit-flips
into its circuit or into the input space affect the output in such
a way, that the faults can be detected, i.e., an invalid state 𝑆𝑁𝑒 is
generated.
Due to requirementR3, the state derived in different paths merging
at some point also produces different encoded states. For example,
the path 𝑆1 → 𝑆3 in Figure 2 derives a different state than the path
𝑆2 → 𝑆3. As maintaining different state symbols for a single state
is costly, we add an additional requirement:
R4 Collision Capability: The hardened next-state function
needs to produce the same encoded next state for different paths us-
ing amodifier, i.e.,𝜙𝐹𝐻 (𝑆𝐶1𝑒 , 𝑋1𝑒 , 𝑀𝑜𝑑1) ==𝜙𝐹𝐻 (𝑆𝐶2𝑒 , 𝑋2𝑒 , 𝑀𝑜𝑑2)
for 𝑆𝐶1𝑒 ≠ 𝑆𝐶2𝑒 and 𝑋1𝑒 ≠ 𝑋2𝑒 . The modifiers𝑀𝑜𝑑1 and𝑀𝑜𝑑2 are
used to produce a state collision.

3
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Figure 5: SCFI hardened next-state function.

4.1 Selection of the Hardened Next-State
Function

In SCFI, we utilize a lightweight diffusion function used in crypto-
graphic primitives for the hardened next-state function 𝜙𝐹𝐻 . The
properties of this function imply that any fault at the input or
within the logic maximally affect the output, thereby substantially
decreasing probability of a successful fault attack. Figure 5 depicts
the structure of 𝜙𝐹𝐻 mapping the input space {𝑆𝐶𝑒 , 𝑋𝑒 , 𝑀𝑜𝑑} to a
next encoded state 𝑆𝑁𝑒 .

Mix Layer. In this layer, the input triple is split into 𝑘 𝑙-bit vectors
𝐿. For this, the encoded current state, the encoded control signals,
and the modifier are split into 𝑘 shares and each share is placed
into the vectors, as shown in Figure 5.

Diffusion Layer. Then, in the diffusion layer, the vectors 𝐿 are
absorbed by 𝑘 diffusion functions. These functions conduct a linear
transformation 𝐷 (𝐿) = 𝑀 · 𝐿 which is a matrix multiplication
of vector 𝐿 with matrix𝑀 in a specific field. This transformation,
depending on the choice of matrix𝑀 , yields a strong diffusion. Ideal
choices of this matrix are called maximum distance separable (MDS)
matrices, maximizing the diffusion property.

Unmix Layer. The output of the diffusion layer is stored into 𝑘
𝑙-bit vectors. The concatenation of the first 𝑘-bits of each output
vector results in the encoded next state 𝑆𝑁𝑒 . As the size 𝑘 · 𝑙 of the
output space is larger than the size 𝑠𝑒 of the encoded state, 𝑘 · 𝑙 − 𝑠𝑒
bits are free. SCFI uses, depending on the required fault security, the
𝑒 topmost bits of each output vector as error detection bits 𝐸. Here,
by choosing a corresponding modifier𝑀𝑜𝑑 , 𝜙𝐹𝐻 sets these bits to
a predefined value, i.e., 1. In the error logic, the logical AND of 𝑆𝑁𝑒

and 𝐸 infects the next state when a fault-induced error happens.

5 IMPLEMENTATION
We open-source a modified version of the Yosys [24] open synthe-
sis suite capable of automatically protecting arbitrary FSMs with
SCFI. The protection can be enabled globally or selectively for the
unprotected FSMs in the design flow with a certain fault protection
level 𝑁 . Our implementation adds a new Yosys pass to the suite
operating in between of other optimization passes before the design

α
α

α

Sc, X, Mod

SN, E

Figure 6: Internal structure of the MDS matrix multiplica-
tion [8]. All elements operate on 1-bytes each.

is mapped to the logic gate level. Note that the RTL designer only
needs to manually encode the control signals with a Hamming
Distance of 𝑁 -bits in the modules driving these signals.

5.1 Next-State Logic
First, our custom FSM protection pass identifies the unprotected
FSM by utilizing the existing Yosys FSM passes. Then, the FSM’s
state variables are re-encoded so that the Hamming Distance be-
tween these variables is 𝑁 . Afterwards, our pass extracts the CFG
of the FSM and stores the current state, the next state, and the
control signals for each control-flow edge. With this information,
the modifier𝑀𝑜𝑑 for state transition is determined, satisfying the
equation𝑀𝐷𝑆 (𝑆𝐶𝑒 , 𝑋𝑒 , 𝑀𝑜𝑑) = 𝑆𝑁𝑒 .

For the MDS diffusion function, we use a lightweight construc-
tion with a minimal gate count proposed by Duval et al. [8]. As
shown in Figure 6, this function splits the 32-bit input space into
4 8-bit chunks, performs the matrix multiplication, and returns 4
8-bit vectors which form the 32-bit output. In SCFI, we selected
the 𝑀 8, 3

4, 6 [8] MDS matrix operating in the field F2 [𝛼] with 𝛼 =

𝑋 8 + 𝑋 2 + 1. This particular matrix has a low XOR count with a
slightly larger logical depth compared to other matrices in the 4× 4
category. We note that the choice of MDS matrix can be changed
according to design requirements, i.e., area or timing constraints.
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Figure 7: The next-state logic hardening pass.

Having the modifiers, our pass describes the logic of the next-
state function in the internal Yosys register-transfer level interme-
diate language (RTLIL). As depicted in Figure 7, first 1 , the active
control signal 𝑋𝑒𝑎𝑐𝑡𝑖𝑣𝑒 is determined by performing a pattern match
of the control signal and the current state 𝑆𝐶𝑒 . Then, using this
signal and 𝑆𝐶𝑒 , the modifier for this input is selected 2 . In the
mix layer 3 , the wires of the triple {𝑆𝐶𝑒 , 𝑋𝑒𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑀𝑜𝑑𝑎𝑐𝑡𝑖𝑣𝑒 } are
distributed to the 𝑘 32-bit input MDS diffusion functions. These
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lightweight diffusion functions 4 consist of only XOR gates. In the
unmix layer 5 , the next state 𝑆𝑁𝑒 is concatenated and the error
bits 𝐸 are selected. By connecting 𝑆𝑁𝑒 and 𝐸 using AND gates 6 , a
fault infectively destroys the next state.

6 EVALUATION
To evaluate the effectiveness of SCFI in terms of area, timing, and
security when protecting security-sensitive FSMs of an industry-
driven project, we integrate our custom Yosys pass into the design
flow of the OpenTitan [9] secure element. This chip, which is en-
tirely open-source, acts as a secure root-of-trust and provides a key
storage and cryptographic accelerators.

6.1 Area Overhead
In order to evaluate the area overhead introduced by SCFI, we an-
alyzed unprotected (i), manually protected (ii), and automatically
protected (iii) FSMs. As the reference (i) for our evaluation, we
selected several FSMs of OpenTitan and synthesized the entire cor-
responding module with Yosys using the open-source Nangate45
standard cell library. For the manually protected (ii) FSMs, we en-
coded the control signals with a Hamming Distance of 𝑁 -bits and
instantiated the next-state logic of the FSM 𝑁 times. To detect
control-flow hijacks triggered by faults, we designed a small error
logic monitoring the state registers of the redundant FSMs and
raising an error signal when one or more state values mismatch.
Finally, we automatically protected (iii) the reference (i) FSMs by
calling the SCFI Yosys pass in the design flow. Similar to the manu-
ally protected (ii) FSMs, we encoded the control signals with a HD
of 𝑁 -bits and configured SCFI that at least 𝑁 faults are required to
hijack the FSM. Table 1 illustrates the area overheads for the three
configurations for different FSMs and different protection levels
𝑁 ranging from 2 to 4. For the manual redundancy approach, the
geometric mean of the area overhead is 17.5 % for 𝑁 = 2, 42.9 % for
𝑁 = 3, and 67.6 % for 𝑁 = 4. In comparison, the geometric mean
area overhead for the FSMs protected with SCFI is 9.6 % for 𝑁 = 2,
21.8 % for 𝑁 = 3, and 27.1 % for 𝑁 = 4. Note that for smaller input
spaces {𝑆𝐶𝑒 , 𝑋𝑒 , 𝑀𝑜𝑑} the area overhead for SCFI could be higher
than for a redundancy approach (cf. otbn_controller in Table 1)
as SCFI needs to instantiate a MDS matrix with a 32-bit input.

Table 1: Area overhead for protecting different FSMs using
redundancy or SCFI.

Unprotected Redundancy SCFI
Area [GE] Area [%] Area [%]

Protection Level 2 3 4 2 3 4
adc_ctrl_fsm 1019 38 76 121 14 27 42
aes_control 632 13 44 77 6 22 32
i2c_fsm 2729 38 70 109 20 21 27
ibex_controller 537 29 75 122 13 34 43
ibex_lsu 933 10 21 32 2 13 16
otbn_controller 2857 1 4 5 5 5 6
pwrmgr_fsm 301 89 184 334 33 71 84
Geometric Mean 17.5 42.9 67.6 9.6 21.8 27.1

3300 3600 3900 4200 4500 4800 5100 5400 5700 6000
Clock Period [ps]

0.72
0.80
0.88
0.96
1.04
1.12
1.20
1.28
1.36
1.44

Ar
ea

 [k
GE

]

Redundancy N=3
SCFI N=3
Base

Figure 8: Area-time product for the adc_ctrl_fsmmodule in
different configurations.

6.2 Timing Overhead
SCFI affects the timing of the next-state logic by introducing the
fault-hardened next-state function 𝜙𝐹𝐻 . However, the timing over-
head is minimal, as the logical depth of 𝜙𝐹𝐻 comprises four XOR
layers for the MDS multiplication and an AND layer for the error
masking. We successfully synthesized all modules in all configu-
rations depicted in Table 1 for OpenTitan’s target frequency of
125MHz with Yosys and the open-source standard cell library.

Figure 8 illustrates the area-time (AT) product for the unmodified,
the redundancy-protected, and the SCFI-hardenend adc_ctrl_fsm
module. In this plot, we increased the clock period from 3200 ps to
6000 ps and measured the area in kGE of the design synthesized by
Cadence Genus and a proprietary cell library. For this experiment,
we switched from Yosys to the Cadence synthesis suite as Yosys and
the internally utilized yosys-abc tool only provides basic area and
time optimization functionality. As shown in Figure 8, Cadence was
able tomeet the timing for amaximum frequency of 312MHz for the
base design, 308MHz for the design using redundancy, and 294MHz
for SCFI. However, this slightly decreased frequency is typically
not problematic, as the critical path of a design is usually not in
an FSM. Moreover, as depicted, SCFI achieves a better AT product
for protecting the next-state logic of the FSM in the adc_ctrl_fsm
module than the redundancy approach.

6.3 Security Evaluation
By encoding the control signals and the state variable, an adver-
sary cannot hijack the state machine by inducing faults into fault
targets FT1 and FT2. As the input pattern matching logic 1 of 𝜙𝐹𝐻
operates on these encoded signals, the attacker needs to induce
𝑁 faults into this block to manipulate the active, encoded control
signal. While a fault into the modifier selection block 2 , which
consists of multiplexers, could select a different modifier, the at-
tacker cannot exploit this injected fault. More specifically, a fault
would yield a combination of control signal, state, and modifier
which creates a non-valid next state. Internally, the mix layer 3
consists of a rewiring of the encoded control signals, the state, as
well as the modifier. Hence, this layer can resist up to 𝑁 − 1 faults.
The idea of the diffusion layer 4 is that a small change at the in-
put causes a significant change at the output, i.e., the avalanche
effect. To achieve this property, SCFI internally uses MDS matrix
multiplication yielding optimal diffusion guarantees. These MDS
matrices propagate a bit-flip in a single input byte to all four output
bytes, i.e., they have a branch number of 5. Hence, one or multi-
ple bit-flips into the input triple {𝑆𝐶𝑒 , 𝑋𝑒𝑎𝑐𝑡𝑖𝑣𝑒 ,𝑀𝑜𝑑𝑎𝑐𝑡𝑖𝑣𝑒 } propagate
through this function affecting multiple output bits. By effecting
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the next state 𝑆𝐶𝑒 or the error bits 𝐸, an invalid state is generated
in the unmix 5 and error 6 layer and the FSM enters the default
error state. Precisely, there are only |𝑆𝑁𝑒 | + |𝐸 | valid output states;
an attacker who induces 𝑁 faults on the next-state function inputs,
{𝑋, 𝑆𝐶 }, would have a success probability of 𝑃 =

|𝑆𝑁𝑒 |+ |𝐸 |
𝑘 ·232−(|𝑆𝑁𝑒 |+|𝐸 |)

.
However, considering that |𝑆𝐶𝑒 | + |𝐸 | << 𝑘 · 232−( |𝑆𝑁𝑒+|𝐸 |) , the
success probability is very small. For attacks within the next-state
function, the MDS property of the diffusion layer ensures that the
success probability still remains quite low, albeit it is higher than
the previous case. As shown in Figure 6 depicting the construction
of the MDS matrix, faults in the first three XOR layers propagate
to at least two output bytes. Although a fault at the last layer only
affects one output byte, all valid output states 𝑆𝑁 are still encoded
with a Hamming Distance of 𝑁 , requiring that the adversary needs
to induce 𝑁 bit-flips.

6.4 Formal Security Analysis
We formally analyzed the resilience of the diffusion layer consisting
of the MDS matrix multiplication by utilizing SYNFI [14], a recently
introduced pre-silicon fault analysis tool operating at the netlist.
For the analysis, we synthesized an FSM with 14 state transitions
and configured SCFI with a protection level of 2 bits (HD). We used
SYNFI to analyze whether it is possible to hijack one of the state
transitions and enter another next state using faults. In total, we
injected 7644 single bit-flips exhaustively into all available gates in
the MDS matrix multiplication and 32 (0.42 %) of these faults enable
an adversary to hijack the execution-flow of the FSM.

Note that analyzing the resilience of FSMs against faults is also
necessary when using other protection approaches. For example,
when redundantly instantiating the next-state logic to mitigate
faults, a synthesis tool aiming to meet timing and area constraints
could weaken the security when optimizing the design.

7 LIMITATION & FUTUREWORK
A potential future work could extend SCFI to adapt the MDS matrix
size to the size of the {𝑆𝐶 , 𝑋,𝑀𝑜𝑑} input triple to further improve
the area-time product. In addition, the formal analysis could be
integrated into the Yosys pass to increase security guarantees of
SCFI. Finally, a future work could investigate how SCFI could be
extended to also provide protection for the output logic.

A limitation of the current prototype implementation is that the
selector signals of the MUXes used in the input pattern matching
logic 1 are 1-bit signals. This would allow an adversary to redirect
the control-flow within the bounds of the CFG. To mitigate this
attack vector, an updated version of the SCFI Yosys pass could
introduce encoded selector signals.

8 CONCLUSION
In this paper, we presented SCFI, a methodology capable of protect-
ing the control-flow of finite-state machines against fault attacks.
SCFI substitutes the next-state logic of FSMs with a fault-hardened
function only deriving a next valid state in a fault-free scenario. We
integrated SCFI into the Yosys synthesis suite and open-sourced
our modified toolchain. Our evaluation shows that the area over-
head for FSMs protected with SCFI is lower than for traditional
protection approaches.
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