
Protecting Indirect Branches against Fault Attacks
using ARM Pointer Authentication

Pascal Nasahl
Graz University of Technology

pascal.nasahl@iaik.tugraz.at

Robert Schilling
Graz University of Technology
robert.schilling@iaik.tugraz.at

Stefan Mangard
Graz University of Technology

Lamarr Security Research
stefan.mangard@iaik.tugraz.at

Abstract—With the growing number of embedded devices
deployed in safety- and privacy-sensitive applications, such as
in the automotive area or in the IoT, the hardening of these
systems against attacks is getting essential. As these devices are
physically accessible by an adversary, fault attacks are frequently
used to hijack the control-flow of the executed program and
bypass security defenses such as secure boot, gain arbitrary
code execution, or retrieve sensitive information. To protect the
control-flow from this threat, control-flow integrity (CFI) aims
to be an effective and generic countermeasure.

Although CFI aims to mitigate fault induced control-flow
hijacking attacks, state-of-the-art CFI schemes do not protect
addresses, allowing an attacker to still hijack the control-flow of
indirect branches. To counteract this threat and detect unwanted
bit flips, data encoding schemes are frequently used to add
redundancy to these addresses. However, software-based data
encoding schemes yield large runtime overheads, making them
hard to deploy on a larger scale. To reduce this performance
overhead, related work typically introduces custom CPU changes,
which are not feasible for off-the-shelf systems, leaving a broad
range of devices unprotected. Hence, software-based address
redundancy schemes for commodity devices are needed to thwart
fault attacks on indirect branches.

In this paper, we utilize the ARM pointer authentication
feature of recent ARM architectures to efficiently protect the
target addresses of indirect calls. In addition to the address
protection, we further enhance the state update function of
existing CFI schemes to protect the link between indirect control-
flow transfers. To demonstrate how these defense mechanisms
improve the protection of state-of-the-art CFI countermeasures,
we integrate our address encoding and linking strategy into a
previously introduced CFI scheme. We further extend a LLVM-
based toolchain to automatically thwart fault attacks on indirect
branches without user interaction. Our analysis shows an negligi-
ble overhead of less than 2.34% on average for protecting target
addresses of indirect branches and the link between indirect
branches for SPEC2017.

Index Terms—fault attacks, control-flow integrity, indirect
branches, addresses, ARM pointer authentication

I. INTRODUCTION

Fault attacks pose a severe threat to the security of the
growing number of embedded devices. This attack method-
ology is used to hijack the control-flow of the target device
to bypass secure boot on embedded controllers [17], [22],
[62], to escalate privileges on Linux [59], [60], or to extract
firmware and to gain arbitrary code execution on electronic
control units (ECUs) in automotive applications [40], [44],
[45], [66].

Protecting the integrity of the control-flow is a well-
established technique to thwart fault-based control-flow hijack
attacks. Here, control-flow integrity (CFI) schemes restrict the
control-flow of the program during the execution to a narrow
subset of execution paths. Typically, the set of valid execution
paths through the program is statically determined at compile
time using the control-flow graph (CFG) extracted from the
code. Any control-flow violation, i.e., control-flow deviations
from this predefined path, are detected by CFI and hinder the
attacker from exploiting the injected fault.

However, state-of-the-art CFI schemes aiming to protect the
program execution against fault attacks [2], [24], [29], [46],
[50], [52], [63] do not explicitly protect code-pointers. A fault
to such an address can influence the execution of indirect
branches allowing an adversary to bypass CFI and threaten the
security of the protected program. Although CFI limits the set
of reachable control-flow targets, the statically extracted CFG
is only an over-approximation of the actual executed control-
flow. Hence, an attacker, especially for indirect branches, could
redirect the intended control-flow within the bounds of the
approximated control-flow graph.

Hardening a CFI scheme against attacks on unprotected
addresses requires adding redundancy to these addresses using
data encoding schemes. Such schemes transform addresses
to a different representation, allowing the system to detect a
certain number of bit flips induced by faults. While arithmetic
codes, such as ANB-codes [20], [51] or residue codes [37],
[38] allow simple arithmetic operations on the encoded data,
software-based schemes induce large runtime overheads. To
reduce these large performance overheads, related work [39],
[54] suggests intrusive hardware changes directly in the CPU.
However, as custom hardware changes are unrealistic for
commercial off-the-shelf systems, a broad range of devices
remain unprotected, requiring efficient, software-based coun-
termeasures.

Contribution

In this paper, we are addressing the issue of insufficient
address protection in CFI schemes aiming to thwart control-
flow hijacks using fault attacks on commodity devices from
ARM. To efficiently protect addresses from targeted faults,
which allow attackers to redirect the control-flow, we intro-
duce a software-based hardware-assisted address redundancy
scheme capable of detecting such faults. More concretely, we

are utilizing the pointer authentication extension of recent
ARM architectures to cryptographically sign code-pointers
used by indirect branches. We employ this feature to encode
addresses allowing us to detect bit flips injected by a fault
rather than protecting against classical software attacks. To
protect addresses at program execution but also when stored in
the binary, we encode code-pointers at compile time and verify
the integrity at runtime. We showcase how the verification of
these addresses using dedicated indirect branch instructions
detects bit flips injected by a fault.

Our analysis of state-based CFI schemes further reveals
that indirect control-flow transfers are insufficiently protected,
allowing an attacker to hijack the control-flow. We propose
an enhanced state update mechanism creating a link for
such control-flow transfers to mitigate this attack vector. To
automatically protect indirect branches from targeted fault
attacks, we integrate the address encoding scheme and the
hardened state update function into the LLVM-based toolchain
of FIPAC [52], a previously introduced CFI scheme for ARM
devices. To evaluate the performance overhead, we compiled
a subset of the SPEC2017 benchmark suite with our custom
toolchain. Our performance measurement for protecting indi-
rect branches against fault attacks shows a negligible overhead
of less than 2.34% on average for protecting indirect branches
against fault attacks.

In summary, our contributions are as follows:
• We utilize the ARM pointer authentication feature to

protect all addresses used by indirect branches from fault
attacks.

• We propose a new state update function for signature-
based CFI schemes protecting the link between indirect
control-flow transfers.

• We integrate our control-flow protection mechanisms into
the LLVM-based toolchain of FIPAC.

• We verify the functional correctness and the performance
overhead of our scheme using the SPEC2017 benchmark
and discuss security guarantees.

Paper Outline

In Section II, we discuss fault attacks and describe com-
mon countermeasures, such as control-flow integrity and data
redundancy. Section III highlights foundations of state-based
CFI schemes and discusses weaknesses of these schemes.
To hinder an attacker from exploiting these weaknesses, we
formulate design requirements in Section IV. Finally, in Sec-
tion V, we describe the integration and implementation of our
proposed features into a recently introduced CFI scheme and
evaluate security guarantees and the performance overhead
in Section VI. Section VII summarizes related work and
Section VIII concludes this paper.

II. BACKGROUND

This section first introduces fault attacks and fault inducing
techniques. Then, we discuss the concept of control-flow
integrity and differentiate between schemes targeting to protect
against a software or a fault attacker. Finally, we highlight

data redundancy schemes and the ARM pointer authentication,
which can be used to enforce control-flow integrity.

A. Fault Attacks

In a fault attack, the adversary tampers with the physical
parameters of the device’s environment to trigger a fault in the
memory, the instruction pipeline, or in other components of
the processor. Long-established methods to physically induce
faults are voltage [11] and clock glitches [55], laser [61] and
electromagnetic pulses [41], and even heat [25]. New fault
injection methods, such as Plundervolt [43], CLKscrew [57],
VoltJockey [47], [48], or the Rowhammer effect [27], induce
faults purely in software, which significantly increases the
potential attack surface of fault attacks.

While faults in the past were mainly used to break crypto-
graphic schemes [8]–[10], [18], [19], recent work [17], [22],
[40], [44], [45], [58]–[60], [62], [66], [67] demonstrates that
fault attacks can lever out security assumptions of the device
under attack and bypass secure boot [17], [22], [62] or escalate
privileges on Linux [59], [60]. Such attacks typically aim
to induce a fault within a basic block or target to hijack
the control-flow transfer between two basic blocks. While
faults within a basic block either corrupt or skip individual
instructions [43], [57], control-flow hijacking attacks redirect
the control-flow to sensitive code parts [44], [67].

Due to the impact of fault attacks and the possibility
of performing these attacks remotely or physically, faults
pose a severe threat to many devices and require dedicated
countermeasures.

B. Control-Flow Integrity

Control-flow integrity (CFI) is considered to be an effec-
tive countermeasure to thwart control-flow hijack attacks [1].
The enforcement of the control-flow integrity is implemented
with various enforcement granularities and, therefore, also
addresses different threat models.

1) Software CFI Schemes: Software CFI schemes (SCFI)
aim to protect the control-flow of a program from a software
attacker. These schemes consider an adversary exploiting
memory vulnerabilities to overwrite code-pointers in memory
and to perform attacks such as ROP [56] or JOP [13]. To
address this threat model, SCFI schemes protect code-pointers
to hinder an attacker from hijacking control-flow transfers. By
maintaining the integrity of all code-pointers in the program,
any tampering attempt on these pointers can be detected by
SCFI schemes like CPI [28], CCFI [36], or PARTS [32].

2) Fault CFI Schemes: Protecting the integrity of code-
pointers is insufficient when considering a fault attacker.
SCFI schemes only protect indirect control-flow transfers, i.e.,
indirect calls, which can be tampered by using a software
vulnerability. However, FCFI additionally needs to protect di-
rect control-flow transfers because a targeted fault on the code
segment of the program can modify these transitions. Hence,
FCFI schemes need to enforce the control-flow integrity at a
much finer granularity than SCFI.

CFI for thwarting a fault attacker typically requires the
scheme to extract the control-flow graph (CFG) at compile
time. At runtime, the CFI enforcement policy can detect
any deviation from this extracted CFG. Most software-based
FCFI schemes [2], [24], [29], [46], [50], [52], [63] enforce
the control-flow integrity at basic block granularity. Here,
only transitions between basic blocks, i.e., linear instruction
sequences with a control-flow transfer at the end, which are
in the set of allowed transitions determined by the CFG,
are allowed. More precise enforcement strategies, i.e., FCFI
schemes [15], [64] operating on instruction granularity, typ-
ically require hardware-assistance to counteract high perfor-
mance overheads.

C. Data Redundancy

In order to counteract fault attacks and protect data or
addresses, redundancy is required. In general, there are two
forms of redundancy available, temporal or spatial redundancy.
Temporal redundancy aims to process or store data multiple
times, thus providing protection against fault attacks. Concepts
like instruction duplication [6], [42] are used to provide a
generic protection against fault attacks.

In contrast to temporal redundancy, spatial redundancy adds
additional bits to the data itself. Error detection codes [12],
[23] are a well-known methodology to protect the data against
fault attacks. While originally been developed to protect data
during transmission and storage in harsh environments, i.e., in
space, those mechanisms also provide protection against fault
attacks. A data encoding scheme transforms the payload data
to a different representation, such that bit flips up to a certain
number of faults are detectable, i.e., the Hamming distance.

In the past, data encoding schemes have been developed to
protect the data against fault attacks and ensure its integrity.
For example, binary linear codes [23] can protect the data
but also support simple logical operations. Compared to that,
arithmetic codes, such as ANB-codes [20], [51] or residue
codes [37], [38], support the protection during storage but also
allow to perform simple arithmetic operations on the encoded
data. However, pure software implementations of those en-
coding schemes are expensive. For example, ANB-codes have
runtime overhead factors between 3 and 140. Similar to that,
performing multiple module operations required for residue
codes is also costly and thus not suitable for a pure software
implementation.

To compensate for this performance penalty, it requires
custom hardware support. For example, [39] and [54] modify
the processor and add a dedicated ALU designed for multi-
residue arithmetic. This allows the system to process encoded
data with dedicated instructions, which have the same runtime
overheads compared to plain arithmetic operations. While
these approaches certainly reduce the performance penalty, it
requires intrusive changes to the processor architecture. Thus,
they are not realistic for commodity devices, especially for
existing ARM devices.

D. ARM Pointer Authentication

ARM pointer authentication (PA) [49] was introduced with
the ARMv8.3 architecture and is used to sign and verify
the integrity of code- and data-pointers. ARM extended the
instruction set with the dedicated sign instructions pac* to
sign code- and data-pointers with key A or B, which can
be set in privileged mode. Internally, these instructions use
the tweakable block cipher QARMA [3] to calculate the
MAC of the address, a modifier used as tweak, and the key.
This MAC is then truncated to PACsize bits and used as
pointer authentication code (PAC). ARM stores this PAC in the
upper, unused bits of a pointer to avoid any additional storage
overhead. Although this method reduces the virtual address
space, systems, such as Linux, anyway limit the address space
size to 39- or 48-bit [35]. To verify the integrity of a signed
pointer, the aut* instructions recompute the MAC of the
address and compare it to the PAC stored in the upper bits. If
the pointer integrity verification succeeds, the PAC is stripped
from the pointer and can be used. In case of an integrity failure,
the pointer is either invalidated (ARMv8.3) or an exception is
triggered (ARMv8.6) [33]. The ARMv8.3 extension further
includes instructions that verify the signed pointer before
usage, e.g., the braa recomputes and compares the PAC and
then branches to the destination.

The ARM PA feature is already used for pointer integrity in
commercial products, beginning with the Apple iPhone XS [4].
Additionally, academic projects demonstrated that the PA
extension can also be used to enforce software CFI [31], [32]
and even fault CFI [52].

III. PROBLEM DEFINITION

In this section, we analyze state-of-the-art CFI schemes
that protect from fault attackers and discuss exploitable design
weaknesses.

A. A Motivating Example

To protect a program, such as the one in Listing 1, from
control-flow hijacking attacks triggered by a fault, FCFI
schemes aim to detect control-flow violations.

1 void B(); void C();
2 void D(); void E();
3

4 void A(string password)
5 {
6 void (*fun_ptr)(void) = NULL; A1

7 ...
8 B();
9 ... A2

10 if (password == "secret")
11 fun_ptr = &C; A3

12 else A4

13 fun_ptr = &D
14 ... A5

15 (*fun_ptr)();
16 }

Listing 1. Code snippet vulnerable to fault-based control-flow
hijacking attacks.

Most of the FCFI schemes [1], [46], [52], [63]–[65] stat-
ically extract the control-flow graph (CFG) of the program

A1

B

A2

A3

A4

A5

C

D

E

Fig. 1. Control-flow graph.

C

C

U

UU

U

U

U

U
U

A1

B

A2

A3

A4

A5

C

D

E

P

S=SA1

S=SA3

S=SA4 S=SD

S=SCS=SB

S=SA2

S=SA5

Fig. 2. Control-flow graph with state updates, patches, and checkes.

at compile time. When considering a FCFI scheme enforcing
control-flow integrity at basic block level, the extracted CFG
is similar to the one illustrated in Fig. 1.

To protect the program from fault-based control-flow hi-
jacking attacks, these schemes restrict the control-flow to only
valid edges of the CFG. In Fig. 1, basic block B can only be
reached from basic block A1 and basic block C and D from
basic block A5. As basic block E is never executed in the
program, a control-flow redirection to this basic block violates
the CFG.

To enforce the CFG at runtime, signature-based FCFI
schemes internally maintain a global state S to accumulate
the execution history of the program. This state is typically a
counter [46] or a cryptographic chain [52]. Fig. 2 depicts the
basic principle of updating U , patching P , and checking C
this global CFI state S, which are explained as follows.
Updating: On each control-flow transfer, the current state S
is updated when entering the next basic block.

SN = fU (SC , IDBB) = SC ⊕ IDBB (1)

Equation (1) shows the state update mechanism consisting of
the current state SC , the next state SN , a unique basic block
identifier IDN , and the accumulating state update function
fU (). In the example in Fig. 2, on the control-flow transfer
from A1 to B, the state is updated from S = SA1 to
S = SB = SA1

⊕ IDB .
Patching: In most programs, the execution diverges to mul-
tiple execution flows and then merges again later. As this
would create different states for each individual execution flow,
signature-based CFI schemes require to patch the state to a

common state on control-flow merges.

SN = fP (SC , PatchBB) = SC ⊕ PatchBB (2)

In Equation (2), this patching functionality is depicted. Similar
to the state update function, the current state SC is updated
with the patch value PatchBB . This patching mechanism
assures that in basic block A5 the state S = SA5

is generated
by both branches. Here, the control-flow path through A3

generates the state S = SA5 = SA3 ⊕ IDA5 and the path
through A4 the same state S = SA5

= SA4
⊕PatchA4

⊕IDA5
.

Checking: To detect control-flow violations, regular checks of
the global state S are required.

err = SC 6= SexpectedBB
(3)

These checks, as shown in Equation (3), compare the actual
state SC with the precomputed state SexpectedBB

and trigger
an exception on a mismatch.

B. Security Analysis

The security of signature-based FCFI schemes is based
on the enforcement policy of the scheme, the precision of
the extracted CFG, and the capability of the signature to
detect state mismatches reliably. The enforcement policy is
responsible of restricting the control-flow to the nodes of the
CFG and is determined by the number and placement of the
state updates and checks. While a larger number of updates
and checks clearly increases the enforcement precision of the
scheme, it also increases the runtime overhead of the scheme.
Hence, software-based CFI schemes [46], [52], [63] typically
update and check the state at basic block granularity to detect
inter basic block control-flow hijacks. To also prevent intra
basic block control-flow hijacks, e.g., instruction skipping,
hardware-assisted schemes [15], [64] even update the state at
instruction granularity.

The precision of the CFG is the fundamental cornerstone
for the security of CFI schemes. However, this CFG typically
is statically extracted at compile time and only offers a limited
accuracy. As determining a precise set of valid targets for
indirect branches is hard, the CFG used for CFI enforcement
is possibly over-approximated and contains multiple target
edges [16].

1) Indirect Branches: This over-approximation mainly af-
fects indirect branches, where, in comparison to direct
branches, the target address is not known at compile time.
The statically extracted CFG is only an approximation of the
actually executed control-flow and includes multiple targets
for indirect branches. The indirect call in Line 15 in Listing 1
highlights the problematic of multiple, valid targets. Although
CFI limits valid transitions from A5 to C or D, an attacker still
could redirect the control-flow within the set of valid targets
using two possible fault targets:
IB1 Faulting Addresses: A targeted fault on the address used

in an indirect branch allows the adversary to hijack the
actual control-flow and redirect it to another target. The
target address in fun_ptr could be tampered to point
to D instead of C. As both basic blocks are in the list of

valid targets, a genuine state is generated in both branches
and the state verification mechanism cannot detect the
control-flow hijack.

IB2 Faulting the Branch: Even if the address is not modified
by a fault, a targeted fault directly on the branch could
redirect the control-flow. Here, the target address in
fun_ptr used by the indirect branch points to C but
a fault on this branch redirects the control-flow to D.
Again, as both targets are possible paths through the CFG,
the control-flow redirection remains undetected by the
CFI scheme.

C. Threat Model

Similar to threat models of related CFI schemes [2], [24],
[29], [46], [52], [63] protecting the control-flow of the program
against fault attacks, we are considering an attacker having
physical access to the system. This attacker is capable of
inserting a fault using, e.g., a clock or a voltage glitch, and
aims to hijack the control-flow of the program to redirect it to
other sensitive code parts. We assume that the system already
features a state-based CFI scheme, such as, for example,
FIPAC [52], thwarting fault attacks on the control-flow. In
addition to this threat model, we are considering an attacker
aiming to bypass the protection of indirect branches using the
fault targets IB1 or IB2. These targets can be attacked by
inducing a fault during program runtime or directly into the
code stored in the instruction memory. Here, we consider faults
flipping bits in addresses used by indirect branches stored in
registers, in the immediate field of instructions, or directly in
the code segment.

IV. DESIGN

To address the threat model in Section III-C and counteract
the identified weaknesses IB1 and IB2, we show in this section
how to thwart fault attacks on indirect branches on recent
ARM architectures supporting pointer authentication.

1) Address Protection: Using a targeted fault IB1 on an
address used in an indirect branch allows an adversary to
hijack the control-flow of the program. To counteract such at-
tacks, protecting and verifying the integrity of these addresses
throughout the program execution is required. However, as
indicated in Section II-C, software-based redundancy schemes
induce large performance overheads [51] and hardware-
assisted schemes minimizing these performance overheads
require intrusive hardware changes [54], making it difficult
to deploy these schemes on off-the-shelf devices.

To efficiently and securely protect addresses used for in-
direct branches without hardware changes, we utilize the
pointer authentication feature of recent commodity devices
from ARM. This feature introduces, as described in Sec-
tion II-D, dedicated instructions capable of cryptographically
signing and verifying pointers.

Fig. 3 depicts a 64-bit pointer signed with the pac*
instruction. This instruction uses an optional modifier and
a preconfigured key K to calculate the MAC of the 64-
bit address. In the latest ARMv8.6-A architecture, the result

63 63-PACSize 0

(MAC(addr63...0,mod,K)⊕addr)63...63-PACSize

PAC addr

{

Fig. 3. Pointer signed with ARM pointer authentication.

is then XORed with the original address and stored in the
upper, unused bits of the pointer. To verify the integrity of the
signed pointer before usage, ARM provides dedicated aut*
instructions and combined instructions, such as blr* or br*.

To protect all addresses used by indirect branches, we
utilize ARM’s pointer authentication to sign and verify these
addresses. More concretely, we exploit the PA feature to
efficiently store address redundancy information, i.e., the
pointer authentication code, next to the actual address inside
the pointer using hardware support. At compile time, we
replace the unprotected addresses with their signed equivalent,
i.e., the address with the corresponding pointer authentication
code (PAC). Furthermore, we replace all indirect branch in-
structions, i.e., branch register or branch and link register,
with their PA equivalent, which automatically verify the PAC
before usage. Although signing code-pointers at runtime with
the pac* instructions would be possible, an attacker still
could induce a bit flip into the unprotected address before the
PA instruction protects the address, or directly into the code
segment of the program.

The approach of replacing addresses with their PA protected
version and verifying them before usage yields, compared
to software-based address protection schemes, several advan-
tages. By embedding the redundancy information directly into
the corresponding pointer, the design avoids the usage of addi-
tional registers and additional register pressure. Furthermore,
as ARM’s PA utilizes features of the underlying architecture,
the generation and verification of the address redundancy
information can be realized using a single instruction, avoiding
large performance penalties. Most important, compared to
related address protection schemes [54], our design does not
require custom hardware changes and can be deployed on off-
the-shelf hardware from ARM.

2) Linking the Branch: Independently whether the address
is protected or not, inducing a bit flip when a code-pointer is
used by the indirect branch instruction allows the adversary to
hijack the control-flow of the program. Even though ARM PA
provides dedicated branch instructions, e.g., blr* or br*,
these instructions first verify the integrity of the address by
recomputing and comparing the PAC, removeing the PAC
from the pointer, and then use this unprotected address for
the jump. Hence, a targeted bit flip still enables the attacker
to redirect the control-flow to another valid edge in the control-
flow graph, which cannot be detected by CFI.

To mitigate this attack vector IB2, we propose to enhance
state-update functions of existing state-based CFI schemes. By
merging the target address into the global CFI state at the

caller side and by removing this address at the callee, we are
creating a link between the indirect control-flow transfer. More
concretely, we are inducing the target address into the state
using a XOR, and we remove this added address by XORing
the current address at the callee into the state.

V. IMPLEMENTATION

This section first introduces FIPAC, the state-based CFI
scheme we enhance with our indirect branch protection
mechanisms. Then, we elaborate on how we integrate our
pointer authentication-based address protection scheme and
the hardened state update function linking indirect control-
flow transfers into FIPAC.

A. FIPAC

FIPAC [52] is a CFI scheme protecting the control-flow
against a software and fault attacker. Similar to other software-
based FCFI schemes, FIPAC enforces control-flow integrity at
basic block granularity using a statically extracted CFG. This
CFI scheme exploits hardware features of the ARMv8.6-A
architecture to efficiently derive a cryptographic state at each
basic block entry. In FIPAC, the state update function uses
the pointer authentication (c.f. Section II-D) instructions to
efficiently create a MAC chain with the execution history.

S = pacia(SP , PC,KA) = MACKA
(SP , PC)⊕ SP (4)

Equation (4) shows the update function, which cryptograph-
ically links the previous basic block with the current basic
block, using the pacia instruction. The pacia instruction
generates a MAC using the previous state SP , the current
program counter, and a key KA and XORs the result to
the previous state. This global CFI state S is then stored
into a register exclusively reserved for FIPAC. To verify the
integrity of the executed basic blocks, FIPAC uses the autiza
instruction as checking mechanism. On an integrity verifica-
tion failure, i.e., a control-flow violation within the CFG at
basic block granularity, this instruction triggers an exception.
FIPAC automatically protects programs by providing a custom
LLVM-based toolchain.

B. Address Protection

Faulting a code-pointer in the program allows the adversary
to redirect the control-flow for indirect branches within the
bounds of the CFG. To thwart this attack scenario IB1, we
extend FIPAC to provide protection for all addresses used
by indirect branches by exploiting hardware features of the
underlying ARM architecture. More concretely, we replace
these addresses at compile time with their encoded version
embedding the PAC in the upper bits. In addition, we substitute
all branch instructions with their PA equivalent.

To realize the address protection scheme, we introduce
a custom ModulePass in the LLVM [30] middle-end of
the FIPAC toolchain performing a data-flow analysis. We
scan each function for indirect calls and track the corre-
sponding virtual register in the IR containing the address
information. By exploiting the def-use property of the

1 <main>:
2 ...
3 ; adr x8, #function //defPAC

4 mov x8, #functionPAC[15:0]
5 movk x8, #functionPAC[31:16], lsl #16
6 movk x8, #functionPAC[47:32], lsl #32
7 movk x8, #functionPAC[63:48], lsl #48
8 ...
9 ; br x8 //usePACBranch

10 braaz x8
11 ...

Listing 2. Replacement of unprotected addresses and branch instructions
with their PA protected version.

static single assignment (SSA) form of LLVM, i.e., each
used virtual register is defined at exactly one position, we
find the initial store instruction copying the address into
a virtual register. If this address is a global value of the
type function, we use the LLVM metadata functionality to
tag the store with defPAC and the indirect branch instruc-
tion with usePACBranch. Inside the IRTranslator and
the AArch64InstructionSelector pass in the LLVM
backend, we utilize this metadata to replace the indirect
branch instructions marked with usePACBranch with their
PA equivalent, i.e., braaz or blraaz. These instructions,
which use a zero modifier, verify the integrity of the address
by recomputing and comparing the PAC stored in the pointer
before invoking the address. If the verification fails, an error
is triggered. Furthermore, we replace all adr instructions
marked with the defPAC tag with four consecutive mov
instructions to load a 64-bit immediate value into a register.
While the first mov instruction in Line 4 in Listing 2 clears
the register and stores the first 16-bits of the address into the
register, the other 16-bit values of the address are shifted using
three movk instructions. As the address information is only
available in the linker, we add a custom relocation target to
the address stored in the register. This relocation target then
is resolved in the linker, where we replace the actual address
with the protected version, i.e., we compute the PAC of the
address and store it in the upper bits of the pointer.

Furthermore, we utilize the SSA of the IR in our custom
ModulePass to find instructions loading an global addresses
of the function type into a virtual register, which is not used
by an indirect branch instruction in the current function. In the
backend, we identify these instructions tagged with usePAC
and insert an autiza instruction afterwards, as highlighted
in Line 11 in Listing 3. This instructions uses a zero modifier
to verify the PAC and stores the unprotected address back
to the target register. As performing a data-flow analysis
over function boundaries is challenging, e.g., functions in
external libraries or functions in other C files, which cannot
be accessed by the ModulePass, we use this mechanism to
pass unprotected addresses as function arguments.

Inside a function, we scan for indirect branch instructions

1 <main>:
2 ...
3 ; adr x8, #function //defPAC

4 mov x8, #functionPAC[15:0]
5 movk x8, #functionPAC[31:16], lsl #16
6 movk x8, #functionPAC[47:32], lsl #32
7 movk x8, #functionPAC[63:48], lsl #48
8 str x8, [sp, #16]
9 ...

10 ldr x0, [sp, #16] ; //usePAC

11 autiza x0
12 b #function
13 <function>:
14 paciza x0
15 str x0, [sp, #16] ; //defPAC

16 ...
17 ldr x8, [sp, #16]
18 ; br x8 //usePACBranch

19 braaz x8

Listing 3. Passing protected addresses to functions.

1 <main>:
2 ...
3 state_update(S)
4 eor S, S, x8
5 br x8
6 ...
7 <function>:
8 adr x27, #function
9 eor S, S, x27

10 state_patch(S)
11 ...

Listing 4. Target address insertion into the global CFI state S.

and use the SSA to check, if the target address is passed as a
function argument. In this case, we tag the branch instruction
with usePACBranch to translate it later to an protected
branch instruction and tag the store instruction with defPAC.
In the backend, we extend all store instructions tagged with
defPAC with a paciza, as shown in Line 14 in Listing 3.
The paciza instructions calculates the PAC of the address
using key KA and the zero modifier and stores this PAC into
the upper bits of the pointer.

C. Linking the Branch

To protect indirect branches from threat IB2, we induce the
target address of the indirect branch into the global CFI state at
the caller and remove this address at the callee, which allows
us to detect control-flow hijacking attempts.

Listing 4 highlights the basic principle of this protection
mechanism. After the actual state update state update(S) of
the CFI scheme, we merge the target address of the indirect
branch, which is stored in a register, into the state S using an
XOR. At the entry of the called function, we first remove the

induced address by XORing the state with the address of the
current function. Eventually, the CFI scheme patches the state
using state patch(S).

In order to integrate this mechanism into the
LLVM toolchain of FIPAC, we created a custom
MachineFunctionPass in the LLVM backend scanning
for indirect branch instructions. Between the already existing
CFI state update function and the indirect call instruction, as
depicted in Line 4 in Listing 4, we insert a bitwise exclusive
OR (eor) instruction inducing the target address stored in
register x8 into the global state register. To remove this
address from the state, our LLVM pass extends the function
header of the callee with two instructions, as illustrated in
Line 8 and 9 in Listing 4. We utilize the adr instruction,
which allows to form a PC-relative address using a (negative)
offset, to determine the starting address of the current
function. Then, we again use an eor to add this address to
the current state S. As this function could be invoked from
different callers and state-based CFI schemes require to have
a single unique CFI state at a certain position, removing the
address induced into the state at the callee is necessary.

D. Combination

When combining both approaches, the caller side XORs the
protected address containing the PAC in the upper bits of the
pointer to the global CFI state S. At the callee, the unprotected
address of the invoked function is determined using the adr
instruction. To compute the encoded pointer, we insert an
additional paciza between the adr instruction and the XOR
correction the state. On a valid indirect control-flow transfer,
this instruction computes the same PAC as on the caller side.

E. Key Management

The precomputation of the encoded addresses at compile
time requires the toolchain to have access to the key for
the PAC generation. As the system at runtime needs to have
the same key for verifying the encoded addresses using the
autiza, blraaz, and braaz instructions, we use a pre-
shared key KA. This PA key is configured by a custom
Linux kernel module running in the kernel mode. We discuss
security implications and alternative key sharing approaches
in Section VI-D.

F. Compatibility with other CFI schemes

The protection of addresses used by indirect branches can be
integrated into other CFI schemes related to FIPAC, if they are
deployed on hardware supporting ARM pointer authentication.
State-based CFI schemes, such as CFCSS [46], ACFC [63],
or SWIFT [50], update and verify a global state on each
basic block. As our approach thwarting IB1 encodes addresses
used by indirect branches and does not influence this state
generation and verification mechanism of the underlying CFI
scheme, our scheme is fully compatible with these schemes.

To protect from attack vector IB2, the state update mech-
anism of these CFI schemes could be extended to induce the
target address into the state at the caller side and remove this

address at the callee. By using an XOR, this approach works
for schemes using a counter [24] or signatures [65].

VI. EVALUATION

In this section, we first evaluate the performance impact
and the code size overhead of hardening indirect branches
against fault attacks. Then, we demonstrate the functional
correctness of our proposed changes on an emulator supporting
the required pointer authentication instructions. Finally, we
analyze security guarantees of our enhanced CFI scheme
thwarting fault attacks on indirect branches.

A. Performance Evaluation

To evaluate the performance overhead introduced by the
additional protection of indirect branches, we compile a set of
benchmarks and execute them on an ARM development board.
However, currently, there is no open development board avail-
able supporting the ARM pointer authentication instructions
introduced in ARMv8.3-A. Although Apple offers this feature
in their mobile processors [26], iOS restricts the usage of PA
by custom software [4]. While pointer authentication currently
is not broadly available, with the announcement of ARM
supporting PA in the upcoming ARMv9-A architecture [34],
we expect more devices featuring this extension in the near
future. Due to the lack of openly available hardware, we
emulate the PA instructions on the Raspberry Pi 4 Model
B [21] consisting of a 64-bit ARMv8-A SoC. To emulate these
instruction, we reuse the cycle accurate emulation approach
introduced by PARTS [32] and used by related work [31],
[52]. This PA-analogue consists of four consecutive XORs
simulating the cycles needed for a PA instruction and one
memory access.

a) SPEC2017: To quantify the performance overhead
introduced by the protection of indirect branches, we execute
the SPECspeed2017 [14] benchmark suite on the Raspberry Pi.
More concretely, we compile all C-based benchmarks without
OpenMP support of the SPECspeed2017 Integer test suite with
our customized toolchain using the cycle accurate emulation
approach for different protection configurations.

In Fig. 4, we depict the performance overhead induced by
the protection of indirect branches on top of the baseline, i.e.,
the SPEC2017 benchmark compiled with the FIPAC toolchain.
On average, encoding addresses and verifying them at each
indirect branch using the dedicated blraaz and braaz
instructions yields a performance overhead of 1.50%. The
protection of the link between indirect control-flow transfers
induces a runtime overhead of 0.83% on average. For the
combination of both protection mechanism, we measured an
average performance overhead of 2.34%.

B. Code Size Overhead Evaluation

Protecting indirect branches from threats IB1 and IB2 re-
quires the insertion of additional instructions into the program.
More concretely, for the address protection of IB1, we replace
adr instructions containing an address used by an indirect
branch with four consecutive mov instructions containing the

60
2.g

cc_
s

60
5.m

cf_
s

61
9.l

bm
_s

62
5.x

26
4_s

63
8.i

mag
ick

_s

64
4.n

ab
_s

65
7.x

z_s
0

1

2

3

4

5

Ru
nt

im
e

Ov
er

he
ad

 [%
]

Address
Link
Address & Link

Fig. 4. SPECspeed2017 performance overhead for different protection con-
figurations.

PAC and the address. Furthermore, to pass protected addresses
as function arguments, we insert additional autiza and
paciza instructions to the function headers and entries. To
address threat IB2, we induce the target address of the indirect
branch into the global CFI state S at the caller side and then
correct the CFI state at the callee using additional XORs.

The average code size overhead for thwarting IB1 is 0.16%
and 1.30% for IB2 on average for the SPEC2017 benchmark,
as illustrated in Tab. I. As the FIPAC toolchain automatically
creates two function entry points, one for indirect and one
for direct calls, we automatically extend the indirect function
header entry with the adr and eor instruction. Hence, the
code size overhead is larger for protecting the link between
indirect control-flow transfers than for the address encoding
using the PA feature. When combining the address and the
indirect control-flow transfer protection, we measured an av-
erage code size overhead of 1.92%. Note that these overheads
are on top of the underlying CFI scheme, i.e., FIPAC.

C. Functional Evaluation

To verify the functional correctness of our proposed CFI en-
hancements for FIPAC, we executed the protected SPEC2017
benchmark on a recent Linux kernel on the QEMU [7] em-

TABLE I
CODE SIZE OVERHEAD FOR SPECSPEED2017.

Testcase Address Link Address & Link

602.gcc s 0.13 1.76 2.70
605.mcf s 0.23 1.34 1.55
619.lbm s 0.27 0.56 1.03
625.x264 s 0.10 1.37 1.95
638.imagick s 0.20 1.06 1.59
644.nab s 0.11 1.17 1.81
657.xz s 0.11 1.87 2.79

Average 0.16 1.30 1.92

ulator. However, as FIPAC requires the pointer authentication
features of the ARMv8.6-A architecture and the latest QEMU
6.0 version only offers PA provided in ARMv8.3-A, we
enhanced QEMU to support the EnhancedPAC2 and FPAC
features [52]. The successful execution of SPEC2017 com-
piled with our extended LLVM compiler hardening indirect
branches validates the functional correctness of our proposed
CFI policy refinement.

D. Security Evaluation

As highlighted in Section III, a fault attacker can hijack
the control-flow of a program even if a CFI scheme is in
place. By inducing a targeted fault into an indirect branch, an
attacker can redirect the control-flow within the bounds of the
CFG. In this section, we analyze how the protection of indirect
branches improves security guarantees for attacker models IB1
and IB2.

1) Address Protection: In a CFI scheme without explicit
indirect branch protection, a single fault into an address
used by an indirect branch allows the adversary to hijack
the control-flow. When protecting these addresses using the
ARM pointer authentication feature, an attacker now needs to
induce two faults, one in the address and one in the pointer
authentication code. As this PAC, in comparison to other data
redundancy schemes, is calculated using a keyed MAC, an
attacker, without having access to this key, cannot predict a
valid PAC for a target address. Hence, even when having the
capability of inducing two precise faults, the likelihood of
generating a valid address and PAC pair with a fault is low.

For IB1, a bit flip in a protected address is detected by the
next verification instruction, e.g., blraaz. These instructions
recompute the PAC using the given address and compare it
with the PAC stored in the upper bits of the pointer. If either
the address or the PAC is erroneous, the comparison fails
and, in the ARMv8.3-A architecture, an error bit is set in
the pointer. When using this corrupted pointer, e.g., in the
blraaz instruction, an error is triggered. As a single error
bit can easily be flipped by a fault, we recommend using the
ARMv8.6-A architecture, where an authentication error auto-
matically triggers an exception directly in the authentication
mechanism.

2) Linking the Branch: To address attacker model IB2, we
merge the target address of the indirect branch at the caller
side into the global CFI state and remove this address at the
callee. Now, to bypass this protection mechanism, an adversary
needs to induce an additional, precise fault on the XOR,
which removes the address from the global state. Combining
this concept with the address protection, i.e., XORing the PA
protected address into the state and remove this address by
recomputing the PAC using the paciza instruction, further
improves security guarantees.

3) Key Management: Protecting addresses by replacing
them at compile time with their protected PA equivalent
requires the toolchain to have access to the used key as
the key needs to be identical for the verification at runtime.
However, in our threat model considering a physical attacker,

we argue that a static key still provides strong protection
against faults. An attacker without knowing the key needs
to induce a targeted fault into the address and the PAC with
the goal of crafting a valid PAC. This requires to flip up to
PACsize bits in the PAC. When extending our threat model
with an adversary being capable of extracting the PA keys
from the highest privilege level, this attacker could precompute
a valid PAC. However, the adversary still needs to have the
capabilities of inducing a precise fault into the address and also
into the PAC. Additionally, the underlying CFI scheme already
restricts the control-flow to only valid edges of the CFG. To
support dynamic keys, a kernel module configuring ephemeral
keys for the PA feature and recomputing and replacing all
PACs in the program using binary rewriting could be integrated
into the OS.

4) Function Arguments: In our current prototype imple-
mentation, we do not conduct an exhaustive data-flow analysis
over function boundaries. Instead, before passing a protected
address as an argument to a function, we verify the integrity
of the pointer and remove the PAC using the autiza in-
struction. This approach allows us to pass code-pointers as
function arguments to external functions, e.g., provided by a
dynamically linked library. Inside of a function, we analyze the
function arguments and protect all addresses used by indirect
branch instructions using the paciza instruction. Hence,
addresses passed as function arguments in a register or on
the stack are, for a short moment, unprotected, allowing an
adversary to induce a bit flip. However, in a future version
of our prototype, this attack vector can be avoided by using a
statically linked library and performing a data-flow analysis on
the compiled binary and replace unprotected addresses using
binary rewriting. Note that this approach also would reduce
the performance impact of mitigating attacker model IB1, as
no additional autiza and paciza instructions are required.

5) Conditional Branches: Previous research [5], [58] has
shown that inducing a fault into a conditional branch allows
an attacker to hijack the control-flow and, for example, bypass
secure boot. To thwart fault attacks on conditional branches,
protection for the operands, the comparison, and the branch
itself is required [53]. Although addressing these attack vectors
using the ARM pointer authentication feature is possible,
there are some major limitations with this approach. While
the PA feature could be used to protect operands of the
conditional branches by embedding the PAC into the upper bits
of the value, performing arithmetic operations or comparisons
directly on the protected value are not possible. Hence, before
each operation, the PAC needs to be removed, allowing an
attacker to still induce a bit flip. In addition, storing the PAC
in the upper bits of the value reduces the data size from 64-
bits to 64 − PACsize bits. While this is not a limitation for
pointers, as the addresses in pointers do not occupy the whole
64-bit space, reducing the data size for values is not practical
for different scenarios. Hence, CFI schemes, independently if
they are extended with our indirect branch protection, need to
be complimented with addition countermeasures addressing
attacks on conditional branches.

VII. RELATED WORK

This section summarizes related work and compares them
to our address protection and branch linking approach.

A. Code-Pointer Integrity

Code-pointer integrity (CPI) [28] is a SCFI scheme protect-
ing sensitive code-pointers in a program from an adversary
exploiting a memory vulnerability by storing metadata to these
pointers in an isolated memory region. As CPI considers a
software attacker in its threat model, CPI protects accesses
to these safe memory regions. However, as a targeted fault
still can tamper the metadata stored in the protected memory,
CPI cannot hinder an attacker hijacking the control-flow using
faults.

Similar to CPI, CCFI [36] protects code-pointers in the
program by storing a MAC next to the pointer. By utilizing
features of the hardware, i.e., AES-NI, the macptr and
checkptr instructions compute and verify the MAC for
each sensitive pointer. Although this approach protects code-
pointers stored in memory from fault attacks, these pointers
are stored unprotected in registers, allowing a fault to tamper
addresses and redirect the control-flow.

PARTS [32] utilizes the PA feature of recent ARM ar-
chitectures to sign and verify all code- and data-pointers
in the program. Although this approach is similar to our
work, PARTS only considers a software adversary in their
threat model. Hence, PARTS only signs these pointers at
runtime, allowing a fault attacker to either induce a fault
directly in the address before the pointer is signed using a
pac* instruction or directly into the code segment of the
binary. Additionally, PARTS is vulnerable to attack vector
IB2, as after the verification of the PAC, the unprotected
address is used for the jump. In comparison to PARTS, our
approach protects addresses used by indirect branches from
faults throughout the program’s whole execution life cycle and
the binary in the instruction memory by replacing unprotected
addresses with their protected version during compile time. By
merging the target address of indirect branches directly into
the global CFI state and removing this address at the callee,
we further prevent an attacker from exploiting IB2.

VIII. CONCLUSION

In this work, we showcased how the missing address protec-
tion in state-of-the-art fault CFI schemes allow an attacker to
hijack the execution of indirect branches by inducing targeted
faults. While data encoding schemes could mitigate these
attacks, software-based schemes yield large runtime over-
heads and hardware-based systems require intrusive hardware
changes.

To efficiently protect indirect branches on commodity de-
vices from ARM, we propose a hardware-assisted data redun-
dancy scheme. We utilize the pointer authentication feature of
recent ARM architectures to embed a MAC into all addresses
used by indirect branches. By replacing unprotected addresses
at compile time with their protected equivalent, we thwart
fault attacks on these addresses stored in registers, in the

immediate field of instructions, or directly in the binary. We
further replace all indirect branch instructions with their PA
equivalent, automatically verifying the integrity of the MAC
and triggering an exception on mismatch. Additionally, we
enhance the state update mechanism of signature-based CFI
schemes to protect the link between indirect control-flow
transfers. By merging the target address of the indirect branch
into the global CFI state at the caller side and correcting the
state at the callee with the current address, we assure that
the executed control-flow follows the intended control-flow.
To demonstrate how these defense mechanisms improve the
protection of state-of-the-art CFI schemes, we integrate our
address encoding and linking strategy into FIPAC, a previously
introduced CFI scheme. The integration of these countermea-
sures into the LLVM-based toolchain of FIPAC allows to
automatically protect indirect branches of programs without
user interaction. To evaluate the hardware-assisted address
redundancy scheme and the protection of indirect control-flow
transfers, we compiled a subset of the SPEC2017 benchmark
with our custom LLVM-based toolchain and executed the
protected binary on a Raspberry Pi. Our evaluation shows an
negligible runtime overhead of less than 2.34% on average.

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No
681402).

REFERENCES

[1] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity principles, implementations, and applications. ACM Trans.
Inf. Syst. Secur., 13:4:1–4:40, 2009.

[2] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Ny-
man, Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. C-
FLAT: Control-Flow Attestation for Embedded Systems Software. In
Conference on Computer and Communications Security – CCS, pages
743–754, 2016.

[3] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Ma-
trices Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour
Constructions With Non-Involutory Central Rounds, and Search Heuris-
tics for Low-Latency S-Boxes. IACR Trans. Symmetric Cryptol., 2017:4–
44, 2017.

[4] Brandon Azad. Examining pointer authentication on the
iphone xs. https://googleprojectzero.blogspot.com/2019/02/
examining-pointer-authentication-on.html, 2019. [accessed 2020-
09-22].

[5] Guillaume Barbu, Guillaume Duc, and Philippe Hoogvorst. Java Card
Operand Stack: Fault Attacks, Combined Attacks and Countermeasures.
In Smart Card Research and Advanced Applications – CARDIS, volume
7079 of LNCS, pages 297–313, 2011.

[6] Thierno Barry, Damien Couroussé, and Bruno Robisson. Compilation
of a Countermeasure Against Instruction-Skip Fault Attacks. In Cryp-
tography and Security in Computing Systems – CS2@HiPEAC, pages
1–6, 2016.

[7] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
USENIX Annual Technical Conference – USENIX ATC, pages 41–46,
2005.

[8] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key
Cryptosystems. In Advances in Cryptology – CRYPTO, volume 1294 of
LNCS, pages 513–525, 1997.

[9] Johannes Blömer and Jean-Pierre Seifert. Fault Based Cryptanalysis of
the Advanced Encryption Standard (AES). In Financial Cryptography
– FC, volume 2742 of LNCS, pages 162–181, 2003.

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

[10] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
Importance of Checking Cryptographic Protocols for Faults (Extended
Abstract). In Advances in Cryptology – EUROCRYPT, volume 1233 of
LNCS, pages 37–51, 1997.

[11] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping
the Glitch: Optimizing Voltage Fault Injection Attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2019:199–224, 2019.

[12] David T. Brown. Error Detecting and Correcting Binary Codes for
Arithmetic Operations. IRE Trans. Electron. Comput., 9:333–337, 1960.

[13] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, Hovav Shacham, and Marcel Winandy. Return-oriented pro-
gramming without returns. In Conference on Computer and Communi-
cations Security – CCS, pages 559–572, 2010.

[14] Standard Performance Evaluation Corporation. Spec cpu 2017. https:
//www.spec.org/cpu2017, 2019. [accessed 2020-09-22].

[15] Ruan de Clercq, Johannes Götzfried, David Übler, Pieter Maene, and
Ingrid Verbauwhede. SOFIA: Software and control flow integrity
architecture. Comput. Secur., 68:16–35, 2017.

[16] Ruan de Clercq and Ingrid Verbauwhede. A survey of Hardware-based
Control Flow Integrity (CFI). CoRR, abs/1706.07257, 2017.

[17] Jan Van den Herrewegen, David F. Oswald, Flavio D. Garcia, and Qais
Temeiza. Fill your Boots: Enhanced Embedded Bootloader Exploits
via Fault Injection and Binary Analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021:56–81, 2021.

[18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical Ineffective Fault Attacks
on Masked AES with Fault Countermeasures. In Advances in Cryptology
– ASIACRYPT, volume 11273 of LNCS, pages 315–342, 2018.

[19] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Man-
gard, Florian Mendel, and Robert Primas. SIFA: Exploiting Ineffective
Fault Inductions on Symmetric Cryptography. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018:547–572, 2018.

[20] Philippe Forin. Vital coded microprocessor principles and application
for various transit systems. IFAC Proceedings Volumes, 23(2):79–84,
1990.

[21] Raspberry Pi Foundation. Raspberry pi 4. https://www.raspberrypi.org/
products/raspberry-pi-4-model-b/, 2021. [accessed 2021-01-28].

[22] Free60.org. Reset Glitch Hack. http://free60.org/wiki/Reset Glitch
Hack. [accessed 2020-09-19].

[23] Richard W Hamming. Error detecting and error correcting codes. Bell
Labs Technical Journal, 29(2):147–160, 1950.

[24] Karine Heydemann, Jean-François Lalande, and Pascal Berthomé. For-
mally verified software countermeasures for control-flow integrity of
smart card C code. Comput. Secur., 85:202–224, 2019.

[25] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side Channel
and Heating Fault Attacks. In Smart Card Research and Advanced
Applications – CARDIS, volume 8419 of LNCS, pages 219–235, 2013.

[26] Apple Inc. Apple soc security. https://support.apple.com/guide/security/
apple-soc-security-sec87716a080/web. [accessed 2021-04-26].

[27] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping
bits in memory without accessing them: An experimental study of
DRAM disturbance errors. In International Symposium on Computer
Architecture – ISCA, pages 361–372, 2014.

[28] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea,
R. Sekar, and Dawn Song. Code-Pointer Integrity. In Operating Systems
Design and Implementation – OSDI, pages 147–163, 2014.

[29] Jean-François Lalande, Karine Heydemann, and Pascal Berthomé. Soft-
ware Countermeasures for Control Flow Integrity of Smart Card C
Codes. In European Symposium on Research in Computer Security –
ESORICS, volume 8713 of LNCS, pages 200–218, 2014.

[30] Chris Lattner and Vikram S. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Symposium on
Code Generation and Optimization – CGO, pages 75–88, 2004.

[31] Hans Liljestrand, Thomas Nyman, Lachlan J Gunn, Jan-Erik Ekberg, and
N Asokan. Pacstack: an authenticated call stack. In 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021.

[32] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-
Erik Ekberg, and N. Asokan. PAC it up: Towards Pointer Integrity using
ARM Pointer Authentication. In USENIX Security Symposium, pages
177–194, 2019.

[33] Arm Limited. Arm architecture reference manual. https://developer.arm.
com/documentation/ddi0487/latest/, 2020. [accessed 2021-01-26].

[34] ARM Limitedv. Arm’s solution to the future needs of ai, security
and specialized computing is v9. https://www.arm.com/company/news/
2021/03/arms-answer-to-the-future-of-ai-armv9-architecture. [accessed
2021-04-26].

[35] Catalin Marinas. Memory layout on aarch64 linux. https://www.kernel.
org/doc/html/latest/arm64/memory.html, 2021. [accessed 2021-01-26].

[36] Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières.
CCFI: Cryptographically Enforced Control Flow Integrity. In Conference
on Computer and Communications Security – CCS, pages 941–951,
2015.

[37] James L Massey. Survey of residue coding for arithmetic errors.
International Computation Center Bulletin, 3(4):3–17, 1964.

[38] James L Massey and Oscar N Garcı́a. Error-correcting codes in computer
arithmetic. In Advances in Information Systems Science, pages 273–326.
Springer, 1972.

[39] Marcel Medwed and Stefan Mangard. Arithmetic logic units with high
error detection rates to counteract fault attacks. In Design, Automation
& Test in Europe – DATE, pages 1644–1649, 2011.

[40] Alyssa Milburn, Niek Timmers, Nils Wiersma, Ramiro Pareja, and
Santiago Cordoba. There will be glitches: Extracting and analyzing
automotive firmware efficiently. Black Hat USA, 2018.

[41] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson,
and Emmanuelle Encrenaz. Electromagnetic Fault Injection: Towards
a Fault Model on a 32-bit Microcontroller. In Fault Diagnosis and
Tolerance in Cryptography – FDTC, pages 77–88, 2013.

[42] Nicolas Moro, Karine Heydemann, Emmanuelle Encrenaz, and Bruno
Robisson. Formal verification of a software countermeasure against
instruction skip attacks. J. Cryptogr. Eng., 4:145–156, 2014.

[43] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. Plundervolt: Software-based Fault Injection
Attacks against Intel SGX. In IEEE Symposium on Security and Privacy
– S&P, pages 1466–1482, 2020.

[44] Pascal Nasahl and Niek Timmers. Attacking autosar using software and
hardware attacks. In escar USA, 2019.

[45] Colin O’Flynn. BAM BAM!! On Reliability of EMFI for in-situ
Automotive ECU Attacks. IACR Cryptol. ePrint Arch., 2020:937, 2020.

[46] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Control-
flow checking by software signatures. IEEE Trans. Reliab., 51:111–122,
2002.

[47] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaching TrustZone by Software-Controlled Voltage Ma-
nipulation over Multi-core Frequencies. In Conference on Computer and
Communications Security – CCS, pages 195–209, 2019.

[48] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaking SGX by Software-Controlled Voltage-Induced
Hardware Faults. In IEEE Asian Hardware Oriented Security and Trust
Symposium – ASIANHOST, pages 1–6, 2019.

[49] Inc. Qualcomm Technologies. Pointer authentication on
armv8.3. https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf, 2017. [accessed
2021-01-26].

[50] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I. August. SWIFT: Software Implemented Fault Tolerance. In
Symposium on Code Generation and Optimization – CGO, pages 243–
254, 2005.

[51] Ute Schiffel, André Schmitt, Martin Süßkraut, and Christof Fetzer.
ANB- and ANBDmem-Encoding: Detecting Hardware Errors in Soft-
ware. In Computer Safety, Reliability, and Security, 29th International
Conference, SAFECOMP 2010, Vienna, Austria, September 14-17, 2010.
Proceedings, volume 6351 of LNCS, pages 169–182, 2010.

[52] Robert Schilling, Pascal Nasahl, and Stefan Mangard. FIPAC: Thwarting
Fault- and Software-Induced Control-Flow Attacks with ARM Pointer
Authentication. CoRR, abs/2104.14993, 2021.

[53] Robert Schilling, Mario Werner, and Stefan Mangard. Securing condi-
tional branches in the presence of fault attacks. In Design, Automation
& Test in Europe – DATE, pages 1586–1591, 2018.

[54] Robert Schilling, Mario Werner, Pascal Nasahl, and Stefan Mangard.
Pointing in the Right Direction - Securing Memory Accesses in a Faulty
World. In Annual Computer Security Applications Conference – ACSAC,
pages 595–604, 2018.

[55] Bodo Selmke, Florian Hauschild, and Johannes Obermaier. Peak
Clock: Fault Injection into PLL-Based Systems via Clock Manipulation.
In Proceedings of the 3rd ACM Workshop on Attacks and Solutions
in Hardware Security Workshop, ASHES@CCS 2019, London, UK,
November 15, 2019, pages 85–94, 2019.

https://www.spec.org/cpu2017
https://www.spec.org/cpu2017
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
http://free60.org/wiki/Reset_Glitch_Hack
http://free60.org/wiki/Reset_Glitch_Hack
https://support.apple.com/guide/security/apple-soc-security-sec87716a080/web
https://support.apple.com/guide/security/apple-soc-security-sec87716a080/web
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://www.kernel.org/doc/html/latest/arm64/memory.html
https://www.kernel.org/doc/html/latest/arm64/memory.html
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

[56] Hovav Shacham. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In Conference on Computer
and Communications Security – CCS, pages 552–561, 2007.

[57] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo.
CLKSCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement. In USENIX Security Symposium, pages 1057–1074, 2017.

[58] N Timmers and A Spruyt. Bypassing secure boot using fault injection.
Black Hat Europe, 2016, 2016.

[59] Niek Timmers and Cristofaro Mune. Escalating Privileges in Linux
Using Voltage Fault Injection. In Fault Diagnosis and Tolerance in
Cryptography – FDTC, pages 1–8, 2017.

[60] Niek Timmers, Albert Spruyt, and Marc Witteman. Controlling PC
on ARM Using Fault Injection. In Fault Diagnosis and Tolerance in
Cryptography – FDTC, pages 25–35, 2016.

[61] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico Menarini.
Practical Optical Fault Injection on Secure Microcontrollers. In Fault
Diagnosis and Tolerance in Cryptography – FDTC, pages 91–99, 2011.

[62] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle
Morisset, and Sébastien Ermeneux. Laser-Induced Fault Injection on
Smartphone Bypassing the Secure Boot-Extended Version. IEEE Trans.
Computers, 69:1449–1459, 2020.

[63] Rajesh Venkatasubramanian, John P. Hayes, and Brian T. Murray. Low-
Cost On-Line Fault Detection Using Control Flow Assertions. In
International Symposium on On-Line Testing and Robust System Design
– IOLTS, pages 137–143, 2003.

[64] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan
Mangard. Sponge-Based Control-Flow Protection for IoT Devices. In
IEEE European Symposium on Security and Privacy – EURO S&P,
pages 214–226, 2018.

[65] Mario Werner, Erich Wenger, and Stefan Mangard. Protecting the
Control Flow of Embedded Processors against Fault Attacks. In Smart
Card Research and Advanced Applications – CARDIS, volume 9514 of
LNCS, pages 161–176, 2015.

[66] Nils Wiersma and Ramiro Pareja. Safety != Security: On the Resilience
of ASIL-D Certified Microcontrollers against Fault Injection Attacks. In
Fault Diagnosis and Tolerance in Cryptography – FDTC, pages 9–16,
2017.

[67] Google Project Zero. Exploiting the dram rowhammer bug to
gain kernel privileges. https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015. [accessed 2021-
04-27].

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

	Introduction
	Background
	Fault Attacks
	Control-Flow Integrity
	Software CFI Schemes
	Fault CFI Schemes

	Data Redundancy
	ARM Pointer Authentication

	Problem Definition
	A Motivating Example
	Security Analysis
	Indirect Branches

	Threat Model

	Design
	Address Protection
	Linking the Branch

	Implementation
	FIPAC
	Address Protection
	Linking the Branch
	Combination
	Key Management
	Compatibility with other CFI schemes

	Evaluation
	Performance Evaluation
	Code Size Overhead Evaluation
	Functional Evaluation
	Security Evaluation
	Address Protection
	Linking the Branch
	Key Management
	Function Arguments
	Conditional Branches

	Related Work
	Code-Pointer Integrity

	Conclusion
	References

