
Securing Conditional Branches in the Presence of
Fault Attacks

Robert Schilling∗†, Mario Werner∗, Stefan Mangard∗
∗Graz University of Technology

firstname.lastname@iaik.tugraz.at
†Know-Center GmbH

Abstract—In typical software, many comparisons and
subsequent branch operations are highly critical in
terms of security. Examples include password checks,
signature checks, secure boot, and user privilege checks.
For embedded devices, these security-critical branches
are a preferred target of fault attacks as a single bit flip
or skipping a single instruction can lead to complete
access to a system. In the past, numerous redundancy
schemes have been proposed in order to provide control-
flow-integrity (CFI) and to enable error detection on
processed data. However, current countermeasures for
general purpose software do not provide protection
mechanisms for conditional branches. Hence, critical
branches are in practice often simply duplicated.

We present a generic approach to protect conditional
branches, which links an encoding-based comparison
result with the redundancy of CFI protection mecha-
nisms. The presented approach can be used for all types
of data encodings and CFI mechanisms and maintains
their error-detection capabilities throughout all steps
of a conditional branch. We demonstrate our approach
by realizing an encoded comparison based on AN-codes,
which is a frequently used encoding scheme to detect
errors on data during arithmetic operations. We ex-
tended the LLVM compiler so that standard code and
conditional branches can be protected automatically
and analyze its security. Our design shows that the
overhead in terms of size and runtime is lower than
state-of-the-art duplication schemes.

Index Terms—control-flow integrity, conditional
branch, fault attacks, countermeasures

I. Introduction
A conditional branch determines the program flow of

the executed software based on a flag or based on the
comparison of two values. While the basic functionality of
a conditional branch is quite simple, the correct execution
is highly critical for the security of computer systems. In
the end, it is a conditional branch that decides whether
or not an entered password is considered correct by a
system, a system update is performed, a signature check
is considered successful, or a user is granted access to a
privileged function. The security implications are huge if a
critical program flow decision is not taken correctly and
for example unauthenticated software is executed [17].

Under normal conditions, conditional branches execute
correctly, i.e., the branch is performed according to the
comparison. However, there exist fault attacks, which allow
an attacker to change the state of a system by using, i.e., a
laser [21] or by manipulating the clock signal or the supply
voltage [3]. The effects of fault induction can include the

skipping of instructions [18], the redirection of memory
accesses, or flipping or forcing bits in memory or registers.
Even bypassing secure boot mechanisms is possible [17].

The research field of studying fault inductions on the
security of cryptographic algorithms is very active [9], [20].
Techniques exist to reveal the keys of different crypto-
graphic functions for many different fault models [6], [7].
There also exist several proposals for countermeasures [14],
[15]. When it comes to attacks and countermeasures for the
general execution of software, there are significantly fewer
publications. Countermeasures that have been proposed
so far for securing software execution can be grouped into
two classes. First, there are countermeasures that aim for
ensuring control-flow integrity (CFI) in the setting of fault
attacks, like [23]. Concerning conditional branches, these
countermeasures only ensure that one of the two possible
execution paths and no completely different path is taken
after a conditional branch. However, these CFI counter-
measures do not protect the decision which path is taken
against fault attacks. The second class of countermeasures
are redundancy mechanisms for data [12], [22]. For exam-
ple, [11] shows how to protect variables during arithmetic
operations using AN-codes. However, as also pointed out
in [13], such schemes only protect data values and their
processing and no branching operations based on the data.

Today, there is a gap. There exist CFI and data protec-
tion schemes against fault attacks. However, there is no
method of linking them efficiently such that the decision
on which execution path to take is protected at the same
level as the control-flow and the processing of the data.
In practice, a method to avoid this gap is to do not only
one conditional branch, but to check the condition for
the branch again after the branch has been taken. This
duplication approach increases security and can be scaled
to an arbitrary order. However, this duplication approach
leads to significant overheads on the one side, and it can
be attacked by inducing multiple times the same fault. The
options for creating diversity by using different branches
to make attacks harder is limited. Typically, it is the same
hardware multiplexer for all branches, which decides which
address is loaded next and remains as a single point of
failure. In this article, we close the existing gap by providing
protection for conditional branches which is encoding-based,
like the redundancy schemes for data and CFI. Our concrete
contributions are as follows:

ar
X

iv
:1

80
3.

08
35

9v
1 

 [
cs

.C
R

] 
 2

2 
M

ar
 2

01
8



1) We present a generic solution that closes the gap of
unprotected conditional branches in the presence of
a CFI protection scheme. Conditional branches are
protected by linking a redundant comparison result
with the redundancy of the CFI protection scheme.

2) We show that we can use AN-codes to efficiently
perform a redundant comparison of encoded values
which preserves the redundancy.

3) We present an LLVM compiler extension to automati-
cally identify and protect conditional branches based
on the concept of AN-codes. We provide experimental
results showing that the overhead in terms of code size
and runtime is lower than state-of-the-art duplication
schemes. Furthermore, a bootloader application can
efficiently be protected with 2.4% code overhead and
with less than 0.1% runtime overhead.

The structure of this paper is as follows. We define the
threat model and discuss existing countermeasures against
faults in Section II. In Section III, we present how we
protect conditional branches in this setting. We discuss a
novel approach to compute a redundant comparison result
used for protected conditional branches in Section IV. In
Section V, we present a compiler extension to protect con-
ditional branches automatically and evaluate the overhead.
Section VI analyzes the security of the countermeasure,
and finally, in Section VIII we conclude this paper.

II. Fault Protected Software Execution
Throughout this paper, we consider an attacker with

physical access to an embedded system. Hence, the attacker
can tamper with the surroundings to induce faults, which
can modify data, code, and also signals like the comparison
result. Faults can occur once or multiple times with multiple
bits modified. We assume the presence of an instruction-
granular CFI protection scheme, protecting the execution of
instructions and the selection of the operands. Furthermore,
we assume the data to be encoded redundantly.

A. Code Protection with Control-Flow Integrity
CFI protection schemes [1] typically protect the

execution of code against software attacks. However, recent
work extends these countermeasures in the context of fault
attacks, where they try to protect the sequence of basic
blocks or even the sequence of instructions [10], [19], [23].

CFI protection schemes in the context of fault attacks
rely on an internal state S, which is modified by each exe-
cuted instruction. Independent of the concrete CFI protec-
tion scheme, control-flow transfers like conditional branches
require special treatment. On control-flow transfers, the
internal state S diverges, because the instructions diverge.
When the control-flow graph merges at a later point in the
program, the CFI state S also needs to merge. To support
this, CFI protection schemes either use correction values
or replace the state.

Although CFI protection mechanisms can deal with
conditional branches, they can not protect them. Such a
scheme only ensures that one of the correct successor’ s

blocks is executed after the branch, but the correct selection
is completely unprotected leaving a single point of failure.

B. Data Protection with AN-Codes
To counteract soft errors in modern CMOS devices

caused by radiation, encoding schemes like [12], [22] have
been proposed. However, these mechanisms are developed
for a protected storage in the memory not for protecting
operations inside the CPU. We focus on AN-codes [8],
which are well suited for fault protection [11], and natively
supports different arithmetic operations. AN-codes have
the form nc = A ·n, where nc denotes the code word, A the
encoding constant, and n the functional value. Hence, all
multiples of A are valid code words. To validate the code
word, the AN-code congruence in the form 0 ≡ nc mod A
is applied.

AN-codes limit the functional value to be less than A to
preserve the error detection capabilities. The encoding con-
stant is chosen by the designer and defines the redundancy
properties of the code. The minimum Hamming distance
between the code words gives a quantitative measure how
strong the chosen A is. Finding a good A so far is limited
by exhaustive search [16], but good encoding constants
already have been found. Hoffmann et al. [13] call these
constants as so-called Super As because their minimum
Hamming distance is maximal for a given word width.

Since AN-codes are closed under addition and subtrac-
tion (Equation 1), these operations do not require any
modification. Operations like multiplication are supported
but require a special correction value.

zc = xc + yc = A · x + A · y = A · (x + y) = A · z (1)

Fetzer et al. [11] use this encoding scheme to build an AN-
code LLVM compiler, which transforms all operations to
the domain of AN-codes, to protect the data processing.
However, as discussed by Hoffmann et al. [13], AN-codes
alone is not sufficient because conditional branches are still
a single point of failure.

C. Duplication
One way to avoid different schemes for protecting code

execution and data is modular redundancy [4], where each
instruction is duplicated. After a duplicated instruction,
a check is inserted. Conditional branches are protected
by replicating the branch multiple times resulting in a
comparison tree. However, inducing the same fault multiple
times bypasses this protection. Barry et al. [5] automate
this, where they duplicate instructions and store the result
always in the same result register and avoid check opera-
tions. However, this countermeasure is only suitable in the
instruction skip fault model.

III. Protecting Conditional Branches
A conditional branch consists of two operations: a com-

parison and a branch. The comparison takes two inputs x
and y, compares them with a predicate P (e.g., <), and
results in a 1-bit signal indicating if the comparison is true



CMP BRP
(PC

1
,S

1
), 

(PC
2
,S

2
) 

 

x
1

Standard Compare & Branch

y

Figure 1. Conditional branch with CFI state.

or false. Typically, this signal is part of the CPU flags.
The branch takes this signal and decides how to update
the program counter (PC), which can end up with two
different values PC1 and PC2, depending on whether the
branch was taken or not.

In the presence of a CFI protection mechanism, condi-
tional branches work differently. Again, there is a compare
and branch operation as shown in Figure 1. However, the
CFI protection mechanism contains a dedicated internal
state S for each value of the PC, which is updated when
executing the conditional branch. Here, the output of a
conditional branch is two different PC values PC1 and
PC2 with their corresponding CFI states S1 and S2.

However, even in the presence of a CFI protection
scheme, there are three different error sources, which are
not protected and can lead to a wrong execution:

1) Faulting the operands. Modifications on the branch
operands or any data that leads to the comparison
can result in a wrongly executed conditional branch.

2) Faulting the comparison. The value deciding whether
a conditional branch is taken or not, the condition
signal, is a 1-bit signal. An attacker being able to
control this signal precisely can change the execution
of the conditional branch.

3) Faulting the branch. A fault modifies the execution of
the branch such that the branch is taken although the
condition value says otherwise or vice versa.

To protect conditional branches, we assume that data and
all performed operations on it are encoded redundantly,
e.g., via AN-codes. We generically address the latter two
points as follows: first, we use a redundantly encoded
condition computation, to ensure the integrity of the
condition value. This encoded comparison takes two
encoded values xc and yc, a comparison predicate P , and
outputs a redundantly encoded condition result, which
Hamming distance is large enough to maintain the same
security level throughout the whole conditional branch. The
comparison predicate P does not require redundancy by
means of encoding since a different predicate uses a different
expected condition value.We then use the standard compare
and branch mechanism that compares the redundant com-
parison result with one of the expected condition values.

Without further measure, this introduces an intermediate
unprotected 1-bit signal. To mitigate this, we exploit the re-
dundancy of the encoded comparison result and merge this
value as part of the CFI state update into the redundancy
of the CFI scheme (Figure 2). Only if the condition is com-
puted correctly and the branch was executed correctly, the
states for S′

1 and S′
2 are correct. This approach eliminates

the single point of failure present in state-of-the-art CFI pro-
tection schemes by not relying on a 1-bit condition value but

CMP BR
Constant

(PC
1
,S’

1
),

(PC
2
,S’

2
)

CFI Update
1

Enc. 
CMP

nx
c

y
c

Standard Compare & Branch

P
P

=

(PC
1
,S

1
),

(PC
2
,S

2
)

Figure 2. Protected conditional branch with state update and n-bit
redundantly encoded comparison.

on a redundantly encoded condition value linked with the
CFI state. The comparison is protected by using an encoded
comparison operation that yields a redundant result. The fi-
nal conditional branch is protected by linking the redundant
condition value with the CFI redundancy. Fault attacks in
both cases yield an invalid state S, which is detectable.

Using an encoded comparison operation ahead of an
ordinary conditional branch makes this design modular and
flexible allowing different encodings with different security
levels to be used at various program locations. The only
requirement for the CFI protection is the ability to merge
a value into the internal state. A dedicated conditional
branch, which automatically performs the CFI state update
and linking the result of the encoded condition value with
the CFI redundancy can increase the performance.

IV. Protected Comparisons with AN-Codes

In this section, we discuss a redundant comparison
framework which is exploiting the arithmetic properties
of AN-codes, which adheres to the interface definition in
Equation 2. The inputs, the internals, and the output are
encoded such that there is no single point of failure. The
two possible outputs of the encoded comparison operation
should have a Hamming distance larger or equal than a
constant D, where D denotes the minimum security level in
bits of the data encoding and the CFI redundancy. Further-
more, we want to avoid the all-zero, and all-one condition
results because faulting to these values is easier than to
others due to the hardware implementation (e.g., the reset
line of a register can initialize its value to zero).

condition←EncodedCompare (P, xc, yc) (2)
with condition ∈ {C1, C2} and
Hamming distance (C1, C2) ≥ D

AN-codes can be compared using a standard compare in-
struction. However, this removes all redundancy and results
in a 1-bit signal stored inside the CPU. Hoffmann et al. [13]
found this issue during fault simulation. Instead, we com-
pute the comparison and preserve the redundancy of the
AN-codes avoiding this single point of failure.

To compute the xc < yc comparison (xc and yc are AN-
coded), we start with a subtraction. Based on the sign of
this result, we get the information shown in 3. However, we
cannot directly use the sign bit because it is not redundant.
The challenging task is performing an entropy compression,
where we map the encoded positive difference values to
C1, and all encoded negative values to C2. Additionally,



we want to maximize the Hamming distance between C1

and C2 yielding a redundant comparison result.

xc − yc

{
positive if xc ≥ yc

negative if xc < yc

(3)

Our approach arithmetically computes this entropy com-
pression yielding a comparison result which preserves the
redundancy of the AN-code. When looking at the difference
in Equation 3, the congruence 0 ≡ (xc − yc) mod A is valid
because AN-codes are closed under subtraction in a signed
representation. However, when interpreting the AN-code
congruence in an unsigned representation, this destroys the
congruence for negative differences. For a positive difference,
on the other hand, the unsigned representation does not
change anything. By intentionally destroying the AN-code
congruence for negative numbers due to casting to unsigned,
we are able to separate the two cases of Equation 3 yielding
two different values. Using 32-bit data types, the unsigned
interpretation xu of a signed negative value xs < 0 in the
twos-complement representation is computed as xu = 232 +
xs. We exploit this property of twos-complement encoded
negative numbers for the required entropy compression.
First, the difference is cast to an unsigned value. This does
not change the difference if it was positive. Negative values
change according to the twos-complement, where the AN-
encoded difference becomes invalid. In Equation 4, we show
the conversion from the signed AN-code to the unsigned
representation for negative values of the difference.

(xc − yc)u = 232 + (xc − yc) = 232 + A · (x− y) (4)

When applying the AN-code congruence to that value by
using a modulo operation with A, we obtain a dedicated
value for the negative difference as shown in Equation 5.(

232 + A · (x− y)
)

%A = 232%A (5)

The relation described before only holds true for the neg-
ative difference. For a positive difference in Equation 3,
the AN-code congruence still returns zero. However, as
discussed before, having a comparison result that is zero is
not favorable. We avoid this zero comparison result for the
true case by adding constant 0 < C < A to the difference
before we compute the remainder (this also changes the
comparison result for the false case).

Algorithm 1 summarizes how the encoded less-than
comparison is computed. The comparison result cond holds
the value 232%A + C if xc is less than yc or the value C if
xc is larger or equal than yc. A modification (e.g., due to a
fault) to the operands such that their AN-code gets invalid
results in a different comparison result, making it invalid.

The same scheme applies to compute a ≤, >, and ≥
comparison by swapping the operands in the first subtrac-
tion and swapping the symbols for the true and false case,
as summarized for 32-bit data types in Table I.

Algorithm 1: AN-encoded < comparison.
Data: xc, yc ∈ AN-code, 0 < C < A.
Result: cond ∈ {C1, C2}.
begin

diff ←− (unsigned) xc − yc + C
cond ←− diff % A

end

Algorithm 2: AN-encoded = and ̸= comparison.
Data: xc, yc ∈ AN-code, 0 < C < A.
Result: cond ∈ {C1, C2}.
begin

diff1 ←− (unsigned) xc − yc

diff1 ←− diff1 + C
rem1 ←− diff1 % A
diff2 ←− (unsigned) yc − xc

diff2 ←− diff2 + C
rem2 ←− diff2 % A
cond ←− rem1 + rem2

end

Protected Equal and Not-Equal Condition Computation
To compute the = and ̸= condition, we combine the ≤

and ≥ condition. The = condition is true if both conditions
are true and false if only ≤ is true or ≥ is true. Both condi-
tions cannot be false at the same time. We combine these
conditions using an addition. Using the condition values for
≥ and ≤ from Table I, the sum of both true values is 2 ·C.
The false case is the sum of one true and one false case
resulting in the condition value 232%A+2·C. The algorithm
to compute the = or ̸= condition is shown in Algorithm 2.

a) Parameter Selection.: For the comparison
algorithms, we used 32-bit registers and chose A to be
63877 (a super-A according to Hoffmann et al. [13]). This
A maximizes the functional value for 16-bit data and has a
minimum Hamming distance of six between all code words,
allowing the code to detect up to 5-bit errors. We then
chose C such that it maximizes the Hamming distance
between the true and false symbol for one comparison. For
the = and ̸= comparison we select C = 14991 and for the
<,≤, >,≥ comparison we select C = 29982. With both
constants, we reach a maximum Hamming distance D of
15-bit between the comparison values.

V. Implementation and Evaluation

We included all transformations to the LLVM compiler
(Figure 3) and evaluated this scheme using an ARMv7-M
instruction set architecture (ISA) simulator. We use a
software-centered GPSA CFI scheme similar to the one

Table I
Condition values for encoded <, ≤, >, ≥ condition values.

Predicate Subtraction True Value False Value
> yc − xc 232%A + C C
≥ xc − yc C 232%A + C
< xc − yc 232%A + C C
≤ yc − xc C 232%A + C



F
ro

n
t E

n
d

IR
 O

p
tim

iz
e

rs

A
N

 C
o

d
e

r

IR IR IR

In
st

ru
ct

io
n

S
e

le
ct

io
n

C
F

I 
In

st
ru

m
e

n
ta

tio
n

In
st

ru
ct

io
n

S
ch

e
d

ul
in

g

C
o

d
e

 E
m

is
si

o
n

Middle End Back End

Source 
Code Binary

L
o

w
e

r 
S

e
le

ct

IR

L
o

w
e

r 
S

w
itc

h

IR

L
o

op
 D

ec
ou

p
le

r

IR

Figure 3. Modified LLVM compiler pipeline. Grey boxes indicate
modifications or additions of/to the regular compilation flow.

in [23]. The branch protection is purely implemented in
software and does not require hardware modifications.

The compiler front end contains a new function attribute
(i.e., protect_branches) to annotate functions that require
protection. The AN-code instrumentation is performed in
the middle end. There, the optimized intermediate repre-
sentation (IR) is preprocessed by a custom Loop Decoupler
pass which separates loop induction variables from the use
in arithmetic expressions or memory accesses and a Lower
Select/Switch pass simplifying the IR for the subsequent
AN Coder. The AN Coder pass transforms all instructions,
which end up in the comparison operation of a conditional
branch to the AN-domain. Moreover, the AN-code based
encoded compare is added here. Up to this point in the com-
piler pipeline, all transformations are independent of the
target architecture and CFI scheme. The CFI Instrumenta-
tion pass in the back end is the only architecture and CFI
specific part of this design. It performs the CFI instrumenta-
tion and adds the state updates to the conditional branches.

a) Cost Analysis.: The overhead of our implemen-
tation comprises three parts: the cost of computation
on encoded data yielding into a branch, the costs of the
branch protection scheme, and the costs of the CFI scheme.
Given that we solely propose a branch protection, we do
not focus on analyzing the cost of the used data protection
or CFI scheme. These costs are highly application specific
and therefore hard to predict. Still, our evaluation
indicates that the expected costs for enforcing CFI and for
protecting data values are quite reasonable when mostly
requiring arithmetic operations.

Analyzing the cost of the encoded compare and the state
update operations (Table II) is possible precisely. The
generic implementation1 of the proposed encoded compare

Table II
Qualitative overhead analysis of the building blocks.

Predicate Required Our Prototype
Operations Instructions Size / B Runtime / ca

>
≥
<
≤

1 +
1 -
1 %

1 ADD
1 SUB

1 UDIV
1 MLS

12 6-16

=
̸=

3 +
2 -
2 %

3 ADD
2 SUB

2 UDIV
2 MLS

26 13-33

aDivision on ARMv7-M requires between 2 and 12 cycles.

1Special encoding constants may have optimized implementations
but different code properties.

Table III
Size and runtime overhead of different branch protections.

Benchmark Metric CFI Duplication Prototype
abs abs + / % abs + / %

integer Size / B 12 128 967 86 617
compare Runtime / c 20 91 355 63 215

memcmp
Size / B 68 272 300 276 306

Runtime / c 1689 10210 504 8905 427

bootloader
Size / B 17252 — — 17672 2.435

Runtime / c 51888k — — 51888k 0.001

comprises additions, subtractions, and modulo operations.
Every ISA typically supports addition and subtraction,
but modulo is not necessarily supported directly and
therefore often is more costly. With the used ARMv7-M
ISA, modulo has to be implemented using a combination
of a slow division (UDIV) and a multiply+subtract
(MLS) instruction. As a result, depending on comparison
predicate, between 12 and 26 bytes memory overhead, and
6-33 cycles runtime overhead is generated for one encoded
compare. Hardware support for a fast modulo instruction
would considerably reduce this overhead.

The cost for state updates dependents on the CFI scheme.
In the software-centered design, they are implemented using
one address load and a store of the comparison result to the
CFI unit. These instructions are added to the beginning
of the successor basic blocks of the protected conditional
branch and introduce 4 bytes code and 4 cycles of runtime
overhead per instantiation. An optimized CFI and branch
protection design can fully omit these costs.

b) Benchmarks.: We use two micro-benchmarks to
measure the overhead in terms of runtime and code size.
These benchmarks (integer compare and memcmp) test the
branch protection in isolation by exercising a single integer
equal comparison and a secure memory comparison with
128 elements. We compare this overhead with a duplication
approach, where we duplicate the conditional branch six
times consecutively to have a comparable single bit fault
tolerance to the AN-code based implementation (i.e., 6-bit
Hamming distance for the encoded values). However, this
duplication approach does not protect any data or arith-
metic operation leading to the branch opposed to the AN-
code based scheme. As a macro-benchmark, we implement
a fault-protected version secure bootloader, similar to the
one in [2]. Only programs which feature a valid ECDSA
signature over the program’s hash get executed. In this
example, the memory comparison of the signature verifica-
tion and all subsequent conditional branches are protected.
This mitigates the single point of failure of a secure boot
mechanism, which was already a target of fault attacks.

The costs (Table III) also include the overhead of com-
puting on the AN-encoded values. Based on the micro-
benchmark results, we observe that the performance in
terms of code size and runtime is on par with the dupli-
cation approach or even better. However, we do not only
protect the conditional branch but also protect the data
and the arithmetic operations on it. When applying this
protection mechanism to the protected bootloader, the



overhead is neglectable since the crypto implementation
dominates code size and runtime. The code size overhead of
less than 2.5% and a neglectable runtime overhead makes
this countermeasure applicable to real-world applications.

VI. Security Analysis
To state the security of the countermeasure, we analyze

its fault resistance. If there is a fault on a single location but
with multiple bits flipped, the error is transparent and de-
tectable relying on the code properties of the selected A [11].
For our parameter selection, we can detect up to 5-bit errors
in a single word during the calculation. In the final condi-
tion result, the error detectability is even higher because
only two symbols are valid. At this place, we reach a Ham-
ming distance of 15-bit between the two condition values.

However, if errors are spread over multiple
locations/operations, the fault detection capabilities of
the AN-code decrease and the code cannot detect as
many bits as before. To investigate this behavior, we
performed a simulation with faults at different locations.
Simulations show that for our parameter selection the
error detectability is reduced to 3-bits, arbitrarily placed
over all the whole computation of the condition value.
With four bits flipped over the whole computation of a
condition value, the error rate where an attacker can flip
the final condition value from true to false or vice versa
is 0.0002 %, which increases having more bits flipped.

VII. Acknowledgement
This project has received funding from the European Re-

search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 681402) and by the Austrian Research Promotion
Agency (FFG) via the competence center Know-Center,
which is funded in the context of COMET – Competence
Centers for Excellent Technologies by BMVIT, BMWFW,
and Styria.

VIII. Conclusion
In this work, we close the gap of unprotected conditional

branches in CFI countermeasures in the presence of fault
attacks. We eliminate the single point of failure by adding
an encoded comparison operation that yields a redundant
condition value. Using a standard compare and branch
mechanism together with the ability to merge the redun-
dant comparison result with the CFI protection mechanism
allows us to protect the execution of a conditional branch.
Our approach is highly flexible allowing us to use different
encoded comparison operations based on different encoding
schemes with different security properties at different places
in the program. We exploit the properties of arithmetic AN-
codes and present novel comparison algorithms to compute
the condition values arithmetically but preserve the redun-
dancy. We integrated this countermeasure in the LLVM
compiler to automatically protect conditional branches.
Experimental evaluation shows little overhead to security
critical programs such as the signature verification of a
secure bootloader making it applicable for real-world usage.

References
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-

flow integrity,” in Conference on Computer and Communications
Security – CCS 2005.

[2] Atmel, “Atmel at02333: Safe and secure bootloader implementa-
tion for sam3/4,” http://www.atmel.com/Images/Atmel-42141-
SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-
for-SAM3-4_Application-Note.pdf, [accessed 19-July-2017].

[3] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low volt-
age fault attacks on the RSA cryptosystem,” in Fault Diagnosis
and Tolerance in Cryptography – FDTC 2009.

[4] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni,
“Low Cost Software Countermeasures Against Fault Attacks:
Implementation and Performances Trade Offs,” Proceedings of
5th Workshop on Embedded Systems Security - WESS, 2010.

[5] T. Barry, D. Couroussé, and B. Robisson, “Compilation of a coun-
termeasure against instruction-skip fault attacks,” in Cryptogra-
phy and Security in Computing Systems – CS2@HiPEAC 2016.

[6] E. Biham and A. Shamir, “Differential fault analysis of secret
key cryptosystems,” in Advances in Cryptology – CRYPTO 1997.

[7] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
eliminating errors in cryptographic computations,” J. Cryptology,
2001.

[8] D. T. Brown, “Error detecting and correcting binary codes for
arithmetic operations,” IRE Trans. Electronic Computers, 1960.

[9] C. Chen and S. Yen, “Differential fault analysis on AES key
schedule and some coutnermeasures,” in Information Security
and Privacy – ACISP 2003.

[10] R. de Clercq, R. D. Keulenaer, B. Coppens, B. Yang, P. Maene,
K. D. Bosschere, B. Preneel, B. D. Sutter, and I. Verbauwhede,
“SOFIA: software and control flow integrity architecture,” in
Design, Automation & Test in Europe Conference & Exhibition –
DATE 2016.

[11] C. Fetzer, U. Schiffel, and M. Süßkraut, “An-encoding compiler:
Building safety-critical systems with commodity hardware,” in
Computer Safety, Reliability and Security – SAFECOMP 2009.

[12] R. W. Hamming, “Error detecting and error correcting codes,”
Bell Labs Technical Journal, 1950.

[13] M. Hoffmann, P. Ulbrich, C. Dietrich, H. Schirmeier, D. Lohmann,
and W. Schröder-Preikschat, “A practitioner’s guide to software-
based soft-error mitigation using an-codes,” in IEEE Interna-
tional Symposium on High-Assurance Systems Engineering –
HASE 2014.

[14] C. H. Kim and J. Quisquater, “Fault attacks for CRT based
RSA: new attacks, new results, and new countermeasures,” in
Information Security Theory and Practice – WISTP 2007.

[15] T. Malkin, F. Standaert, and M. Yung, “A comparative cost/secu-
rity analysis of fault attack countermeasures,” in Fault Diagnosis
and Tolerance in Cryptography – FDTC 2006.

[16] M. Medwed and J. Schmidt, “Coding schemes for arithmetic and
logic operations - how robust are they?” in Information Security
Applications – WISA 2009.

[17] Riscure, “Bypassing Secure Boot using Fault Injection,”
https://www.blackhat.com/docs/eu-16/materials/eu-16-
Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf,
[accessed 13-September-2017].

[18] J. Schmidt and C. Herbst, “A practical fault attack on square
and multiply,” in Fault Diagnosis and Tolerance in Cryptography
– FDTC 2008.

[19] D. Sullivan, O. Arias, D. Gens, L. Davi, A. Sadeghi, and Y. Jin,
“Execution integrity with in-place encryption,” CoRR, 2017.

[20] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault
analysis of the advanced encryption standard using a single fault,”
in Information Security Theory and Practice – WISTP 2011.

[21] J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini,
“Practical optical fault injection on secure microcontrollers,” in
Fault Diagnosis and Tolerance in Cryptography – FDTC 2011.

[22] Z. Wang, M. G. Karpovsky, and K. J. Kulikowski, “Replacing
linear hamming codes by robust nonlinear codes results in a
reliability improvement of memories,” in Dependable Systems
and Networks – DSN 2009.

[23] M. Werner, E. Wenger, and S. Mangard, “Protecting the control
flow of embedded processors against fault attacks,” in Smart
Card Research and Advanced Applications – CARDIS 2015.

http://www.atmel.com/Images/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
http://www.atmel.com/Images/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
http://www.atmel.com/Images/Atmel-42141-SAM-AT02333-Safe-and-Secure-Bootloader-Implementation-for-SAM3-4_Application-Note.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf

