
www.iaik.tugraz.at 

u www.iaik.tugraz.at

S C I E N C E  P A S S I O N  T E C H N O L O G Y

Pointing in the Right Direction – Securing

Memory Accesses in a Faulty World

Robert Schilling1,2, Mario Werner1, Pascal Nasahl1, Stefan Mangard1

1Graz University of Technology, 2Know-Center GmbH

December 06th, 2018

www.iaik.tugraz.at 

Our Faulty World

Graz University of Technology
2

Laser

Voltage

Glitch

Clock Glitch

www.iaik.tugraz.at 

Motivation

 Fault attacks modify code and data

 Use Control-Flow Integrity to restrict the control-flow

 Data encoding to protect data and arithmetic

 No protection for memory accesses

 Memory accesses are critical

 There is a lot of critical information in the memory

 How to ensure we read from the correct location?

Graz University of Technology
3

www.iaik.tugraz.at 

Attack Vector for Memory Accesses

 Faulted pointer redirects

the memory access

Graz University of Technology
4

ptr

Memory

Some data

Secret

www.iaik.tugraz.at 

Attack Vector for Memory Accesses

 Faulted pointer redirects

the memory access

 Faulting the memory

access itself leads to a

wrong access

Graz University of Technology
5

ptr

Memory

Some data

Secret

www.iaik.tugraz.at 

Pointer Protection with Residue Codes

 Pointers are ubiquitous

 Every memory access uses some kind of pointer

 Pointers are unprotected

 Faults can manipulate the pointer to point to a different

memory location

 Pointers require a redundant encoding

 We use a multi-residue code to protect pointers

Graz University of Technology
6

www.iaik.tugraz.at 

A Primer to Multi-Residue Codes

 Arithmetic code with support for addition/subtraction

 Separable code  Tuple representation

 𝑝𝑟 = 𝑝 | 𝑟𝑝,1 … 𝑟𝑝,𝑛 with 𝑟𝑝,𝑖 = 𝑝 𝑚𝑜𝑑 𝑚𝑖 and

𝑀 = 𝑚1, … ,𝑚𝑛

 𝑧𝑟 = 𝑥𝑟 + 𝑦𝑟

= 𝑥 + 𝑦 | ∀ 𝑖: 𝑟𝑥,𝑖 + 𝑟𝑦,𝑖 𝑚𝑜𝑑 𝑚𝑖

 Used to perform pointer arithmetic

Graz University of Technology
7

www.iaik.tugraz.at 

Pointer Protection with Residue Codes

 Use multi-residue code to protect the pointer

 Gives direct access to the functional value  no expensive

decoding required

 Supports pointer arithmetic

 But where to store the redundancy information?

 Parallel register file

 A pair of regular registers

 Reduce address space and store it in the pointer

Graz University of Technology
8

www.iaik.tugraz.at 

Pointer Layout

 Target a 64-bit platform

 Use a multi-reside code with five residues and a modulus size

of 23-bit with 5-bit Hamming distance

 Resulting pointer layout:

Graz University of Technology
9

www.iaik.tugraz.at 

Pointer Operations

 Software approach not practicable

 Instruction set extension for pointer manipulation

 radd/rsub – Add/subtract two residue encoded values

 raddi – Add an immediate to a residue encoded value

 renc – Encode a value to the residue domain

 rdec – Decode and remove the redundancy information

Graz University of Technology
10

www.iaik.tugraz.at 

Secure Memory Accesses

 Pointers are protected but memory access still can be

redirected

 Establish a link between the redundant address and redundant

data

 Perform a linking overlay on top of encoded data

 Unlinking operation only successful when using the correct

pointer and correct memory access

 Translate addressing errors to data errors

Graz University of Technology
11

www.iaik.tugraz.at 

Linking Approach

 Write memory in the form 𝑚𝑒𝑚 𝑝 = 𝑙𝑝 𝐷𝑅𝑒𝑔

 Inverse to read data back 𝐷𝑅𝑒𝑔 = 𝑙𝑝
−1 𝑚𝑒𝑚[𝑝]

 Xor operation  chosen for low-overhead

 𝑚𝑒𝑚 𝑝 = 𝑝 ⊕ 𝐷𝑅𝑒𝑔, 𝐷𝑅𝑒𝑔 = 𝑝 ⊕𝑚𝑒𝑚 𝑝

 Problems with granularity

Graz University of Technology
12

www.iaik.tugraz.at 

Linking Granularity

 Coarse grain link does not add enough diffusion

 Close bytes (8 bytes stride on a 64-bit system) likely have

the same address pad

 Misaligned data accesses with arbitrary size not supported,

e.g. for 𝑚𝑒𝑚𝑐𝑝𝑦

 Use a byte-wise linking granularity

Graz University of Technology
13

www.iaik.tugraz.at 

 Compute the xor-reduced address pad for each byte address

 Better diffusion and support for misaligned accesses

Byte-Wise Data Linking

Graz University of Technology
14

www.iaik.tugraz.at 

Instruction Set Extensions for Memory Accesses

 rs𝑥ck

 Stores one memory element of granularity 𝑥 ∈ 𝑏, ℎ, 𝑤, 𝑑
using a protected pointer and performs memory linking

 rl𝑥ck

 Loads one memory element of granularity 𝑥 ∈ 𝑏, ℎ, 𝑤, 𝑑
using a protected pointer and performs memory unlinking

Graz University of Technology
15

www.iaik.tugraz.at 

LLVM Compiler Prototype

 Transformation performed in the backend  target dependent

 Identify address generation in the SelectionDAG, encode, and

propagate residue information down to memory accesses

 Linker fills encoded relocations

 Supports compilation of large code bases

Graz University of Technology
16

www.iaik.tugraz.at 

 32-bit RISC-V core RI5CY from PULP SoC extended to 64-bit

 Register file, datapath, load-and-store unit extended

 Dedicated residue ALU for pointer operations

RISC-V Hardware Architecture

Graz University of Technology
17

www.iaik.tugraz.at 

Evaluation Setting

 FPGA prototype based on PULP with 5% overhead on Xilinx

Artix-7 FPGA

 ISA extension residue arithmetic and linked memory accesses

 Transformed all data pointers, protected all pointer arithmetic,

replaced all memory accesses

 Evaluated code overhead and runtime in cycles

Graz University of Technology
18

www.iaik.tugraz.at 

Evaluation Results

Graz University of Technology
19

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

www.iaik.tugraz.at 

Evaluation Results

Graz University of Technology
20

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir

www.iaik.tugraz.at 

Evaluation Results

Graz University of Technology
21

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26

www.iaik.tugraz.at 

Evaluation Results

Graz University of Technology
22

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54

www.iaik.tugraz.at 

Evaluation Results

Graz University of Technology
23

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54 39.22

www.iaik.tugraz.at 

Evaluation Results

Graz University of Technology
24

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54 39.22 6.35

www.iaik.tugraz.at 

Evaluation Results

Graz University of Technology
25

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54 39.22 6.35

fft 6.52 6.57 58.01 4.65

keccak 4.79 10.11 255.55 11.31

ipm 4.84 12.81 10.80 3.94

aes_cbc 7.25 8.77 60.91 9.10

conv2d 3.26 13.11 5.92 2.7

www.iaik.tugraz.at 

Evaluation Results

Graz University of Technology
26

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54 39.22 6.35

fft 6.52 6.57 58.01 4.65

keccak 4.79 10.11 255.55 11.31

ipm 4.84 12.81 10.80 3.94

aes_cbc 7.25 8.77 60.91 9.10

conv2d 3.26 13.11 5.92 2.7

Average 9.99 6.34

www.iaik.tugraz.at 

Improvements

 Not all pointer arithmetic is supported

 Unsupported operations are decoded, performed in the

unprotected domain, and then reencoded

 Compiler has early support for RISC-V

 More optimized compiler increases code quality and

reduces code size

Graz University of Technology
27

www.iaik.tugraz.at 

Conclusion

 Protect all data pointers and memory accesses

 Encode pointers with a multi-residue code supporting pointer

arithmetic

 Store redundancy in the upper bits of the pointer

 Perform memory linking on byte-wise granularity

 Translate addressing errors to data errors

 Integrate concept to RISC-V FPGA prototype and LLVM

Graz University of Technology
28

www.iaik.tugraz.at 

u www.iaik.tugraz.at

S C I E N C E  P A S S I O N  T E C H N O L O G Y

Pointing in the Right Direction – Securing

Memory Accesses in a Faulty World

Robert Schilling1,2, Mario Werner1, Pascal Nasahl1, Stefan Mangard1

1Graz University of Technology, 2Know-Center GmbH

December 06th, 2018

www.iaik.tugraz.at 

Selection DAG Transformations

Graz University of Technology
30

 Add PseudoLA

 Used for custom address loading

 rptr node to track residue

 Propagate rptr and replace

instruction

www.iaik.tugraz.at 

Selection DAG Transformations

Graz University of Technology
31

 rptr propagated over add

 Replace add with RADD

 Encode parameters

 Propagate from sources

(PseudoLA,

CopyFromReg) to

sinks (loads/stores/CopyToReg)

