
www.iaik.tugraz.at

u www.iaik.tugraz.at

S C I E N C E P A S S I O N T E C H N O L O G Y

Pointing in the Right Direction – Securing

Memory Accesses in a Faulty World

Robert Schilling1,2, Mario Werner1, Pascal Nasahl1, Stefan Mangard1

1Graz University of Technology, 2Know-Center GmbH

December 06th, 2018

www.iaik.tugraz.at

Our Faulty World

Graz University of Technology
2

Laser

Voltage

Glitch

Clock Glitch

www.iaik.tugraz.at

Motivation

 Fault attacks modify code and data

 Use Control-Flow Integrity to restrict the control-flow

 Data encoding to protect data and arithmetic

 No protection for memory accesses

 Memory accesses are critical

 There is a lot of critical information in the memory

 How to ensure we read from the correct location?

Graz University of Technology
3

www.iaik.tugraz.at

Attack Vector for Memory Accesses

 Faulted pointer redirects

the memory access

Graz University of Technology
4

ptr

Memory

Some data

Secret

www.iaik.tugraz.at

Attack Vector for Memory Accesses

 Faulted pointer redirects

the memory access

 Faulting the memory

access itself leads to a

wrong access

Graz University of Technology
5

ptr

Memory

Some data

Secret

www.iaik.tugraz.at

Pointer Protection with Residue Codes

 Pointers are ubiquitous

 Every memory access uses some kind of pointer

 Pointers are unprotected

 Faults can manipulate the pointer to point to a different

memory location

 Pointers require a redundant encoding

 We use a multi-residue code to protect pointers

Graz University of Technology
6

www.iaik.tugraz.at

A Primer to Multi-Residue Codes

 Arithmetic code with support for addition/subtraction

 Separable code Tuple representation

 𝑝𝑟 = 𝑝 | 𝑟𝑝,1 … 𝑟𝑝,𝑛 with 𝑟𝑝,𝑖 = 𝑝 𝑚𝑜𝑑 𝑚𝑖 and

𝑀 = 𝑚1, … ,𝑚𝑛

 𝑧𝑟 = 𝑥𝑟 + 𝑦𝑟

= 𝑥 + 𝑦 | ∀ 𝑖: 𝑟𝑥,𝑖 + 𝑟𝑦,𝑖 𝑚𝑜𝑑 𝑚𝑖

 Used to perform pointer arithmetic

Graz University of Technology
7

www.iaik.tugraz.at

Pointer Protection with Residue Codes

 Use multi-residue code to protect the pointer

 Gives direct access to the functional value no expensive

decoding required

 Supports pointer arithmetic

 But where to store the redundancy information?

 Parallel register file

 A pair of regular registers

 Reduce address space and store it in the pointer

Graz University of Technology
8

www.iaik.tugraz.at

Pointer Layout

 Target a 64-bit platform

 Use a multi-reside code with five residues and a modulus size

of 23-bit with 5-bit Hamming distance

 Resulting pointer layout:

Graz University of Technology
9

www.iaik.tugraz.at

Pointer Operations

 Software approach not practicable

 Instruction set extension for pointer manipulation

 radd/rsub – Add/subtract two residue encoded values

 raddi – Add an immediate to a residue encoded value

 renc – Encode a value to the residue domain

 rdec – Decode and remove the redundancy information

Graz University of Technology
10

www.iaik.tugraz.at

Secure Memory Accesses

 Pointers are protected but memory access still can be

redirected

 Establish a link between the redundant address and redundant

data

 Perform a linking overlay on top of encoded data

 Unlinking operation only successful when using the correct

pointer and correct memory access

 Translate addressing errors to data errors

Graz University of Technology
11

www.iaik.tugraz.at

Linking Approach

 Write memory in the form 𝑚𝑒𝑚 𝑝 = 𝑙𝑝 𝐷𝑅𝑒𝑔

 Inverse to read data back 𝐷𝑅𝑒𝑔 = 𝑙𝑝
−1 𝑚𝑒𝑚[𝑝]

 Xor operation chosen for low-overhead

 𝑚𝑒𝑚 𝑝 = 𝑝 ⊕ 𝐷𝑅𝑒𝑔, 𝐷𝑅𝑒𝑔 = 𝑝 ⊕𝑚𝑒𝑚 𝑝

 Problems with granularity

Graz University of Technology
12

www.iaik.tugraz.at

Linking Granularity

 Coarse grain link does not add enough diffusion

 Close bytes (8 bytes stride on a 64-bit system) likely have

the same address pad

 Misaligned data accesses with arbitrary size not supported,

e.g. for 𝑚𝑒𝑚𝑐𝑝𝑦

 Use a byte-wise linking granularity

Graz University of Technology
13

www.iaik.tugraz.at

 Compute the xor-reduced address pad for each byte address

 Better diffusion and support for misaligned accesses

Byte-Wise Data Linking

Graz University of Technology
14

www.iaik.tugraz.at

Instruction Set Extensions for Memory Accesses

 rs𝑥ck

 Stores one memory element of granularity 𝑥 ∈ 𝑏, ℎ, 𝑤, 𝑑
using a protected pointer and performs memory linking

 rl𝑥ck

 Loads one memory element of granularity 𝑥 ∈ 𝑏, ℎ, 𝑤, 𝑑
using a protected pointer and performs memory unlinking

Graz University of Technology
15

www.iaik.tugraz.at

LLVM Compiler Prototype

 Transformation performed in the backend target dependent

 Identify address generation in the SelectionDAG, encode, and

propagate residue information down to memory accesses

 Linker fills encoded relocations

 Supports compilation of large code bases

Graz University of Technology
16

www.iaik.tugraz.at

 32-bit RISC-V core RI5CY from PULP SoC extended to 64-bit

 Register file, datapath, load-and-store unit extended

 Dedicated residue ALU for pointer operations

RISC-V Hardware Architecture

Graz University of Technology
17

www.iaik.tugraz.at

Evaluation Setting

 FPGA prototype based on PULP with 5% overhead on Xilinx

Artix-7 FPGA

 ISA extension residue arithmetic and linked memory accesses

 Transformed all data pointers, protected all pointer arithmetic,

replaced all memory accesses

 Evaluated code overhead and runtime in cycles

Graz University of Technology
18

www.iaik.tugraz.at

Evaluation Results

Graz University of Technology
19

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

www.iaik.tugraz.at

Evaluation Results

Graz University of Technology
20

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir

www.iaik.tugraz.at

Evaluation Results

Graz University of Technology
21

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26

www.iaik.tugraz.at

Evaluation Results

Graz University of Technology
22

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54

www.iaik.tugraz.at

Evaluation Results

Graz University of Technology
23

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54 39.22

www.iaik.tugraz.at

Evaluation Results

Graz University of Technology
24

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54 39.22 6.35

www.iaik.tugraz.at

Evaluation Results

Graz University of Technology
25

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54 39.22 6.35

fft 6.52 6.57 58.01 4.65

keccak 4.79 10.11 255.55 11.31

ipm 4.84 12.81 10.80 3.94

aes_cbc 7.25 8.77 60.91 9.10

conv2d 3.26 13.11 5.92 2.7

www.iaik.tugraz.at

Evaluation Results

Graz University of Technology
26

Benchmark

Code Overhead Runtime Overhead

Baseline

[kb]

Overhead

[%]

Baseline

[kCycles]

Overhead

[%]

fir 4.26 8.54 39.22 6.35

fft 6.52 6.57 58.01 4.65

keccak 4.79 10.11 255.55 11.31

ipm 4.84 12.81 10.80 3.94

aes_cbc 7.25 8.77 60.91 9.10

conv2d 3.26 13.11 5.92 2.7

Average 9.99 6.34

www.iaik.tugraz.at

Improvements

 Not all pointer arithmetic is supported

 Unsupported operations are decoded, performed in the

unprotected domain, and then reencoded

 Compiler has early support for RISC-V

 More optimized compiler increases code quality and

reduces code size

Graz University of Technology
27

www.iaik.tugraz.at

Conclusion

 Protect all data pointers and memory accesses

 Encode pointers with a multi-residue code supporting pointer

arithmetic

 Store redundancy in the upper bits of the pointer

 Perform memory linking on byte-wise granularity

 Translate addressing errors to data errors

 Integrate concept to RISC-V FPGA prototype and LLVM

Graz University of Technology
28

www.iaik.tugraz.at

u www.iaik.tugraz.at

S C I E N C E P A S S I O N T E C H N O L O G Y

Pointing in the Right Direction – Securing

Memory Accesses in a Faulty World

Robert Schilling1,2, Mario Werner1, Pascal Nasahl1, Stefan Mangard1

1Graz University of Technology, 2Know-Center GmbH

December 06th, 2018

www.iaik.tugraz.at

Selection DAG Transformations

Graz University of Technology
30

 Add PseudoLA

 Used for custom address loading

 rptr node to track residue

 Propagate rptr and replace

instruction

www.iaik.tugraz.at

Selection DAG Transformations

Graz University of Technology
31

 rptr propagated over add

 Replace add with RADD

 Encode parameters

 Propagate from sources

(PseudoLA,

CopyFromReg) to

sinks (loads/stores/CopyToReg)

