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Abstract— Near-sensor data analytics is a promising direction
for internet-of-things endpoints, as it minimizes energy spent on
communication and reduces network load - but it also poses
security concerns, as valuable data are stored or sent over
the network at various stages of the analytics pipeline. Using
encryption to protect sensitive data at the boundary of the on-chip
analytics engine is a way to address data security issues. To cope
with the combined workload of analytics and encryption in a tight
power envelope, we propose Fulmine, a system-on-chip (SoC)
based on a tightly-coupled multi-core cluster augmented with
specialized blocks for compute-intensive data processing and
encryption functions, supporting software programmability
for regular computing tasks. The Fulmine SoC, fabricated
in 65 -nm technology, consumes less than 20 mW on average
at 0.8 V achieving an efficiency of up to 70 pJ/B in encryption,
50 pJ/px in convolution, or up to 25 MIPS/mW in software. As a
strong argument for real-life flexible application of our platform,
we show experimental results for three secure analytics use
cases: secure autonomous aerial surveillance with a state-of-the-
art deep convolutional neural network (CNN) consuming 3.16 pJ
per equivalent reduced instruction set computer operation,
local CNN-based face detection with secured remote recognition
in 5.74 pJ/op, and seizure detection with encrypted data collection
from electroencephalogram within 12.7 pJ/op.

Index Terms— Computer architecture, parallel architectures,
neural networks, encryption, approximate computing, Internet
of Things, feature extraction, low-power electronics.

I. INTRODUCTION

THE key driver for the development of the Internet-of-
Things (IoT) is collecting rich and diverse information

streams from sensors, which can then be fed to state-of-the-
art learning-based data analytics algorithms. The information
distilled by data analytics on such a rich input set can be used
in a virtually unlimited set of applications, such as health-
care or home automation, which have the possibility to change
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the life of any person for the better [1]. However, in practice,
the possibility to seamlessly tap into this rich stream of data
is limited by two equally important factors. First, the amount
of data an IoT end-node can extract from sensors and send
over the network for analytics is essentially defined by the
energy necessary for data transfer itself. Since IoT end-nodes
must work within a tiny power envelope, this fact introduces a
significant limit on the volume of data that can be transferred,
e.g. the size of captured images, therefore curtailing their use-
fulness. Second, due to the ubiquitous nature of IoT devices,
they often deal with private or safety critical input data even
beyond the predictions of their designers; not only devices
such as healthcare wearables acquire potentially safety-critical
data, but also seemingly innocuous devices (such as cam-
eras) can potentially acquire highly sensitive information [2].
To ensure practicality of IoT-based applications, it is impera-
tive that data transmission from end-nodes to the network is
protected from data theft or malicious tampering.

To address the first limiting factor, near-sensor smart data
analytics is a promising direction; IoT end-nodes must evolve
from simple data collectors and brokers into analytics devices,
able to perform a pre-selection of potentially interesting data
and/or to transform it into a more abstract, higher information
density form such as a classification tag. With the burden
of sensemaking partially shifted from centralized servers to
distributed end-nodes, the energy spent on communication
and the network load can be minimized effectively and more
information can be extracted, making the IoT truly scal-
able. However, performing analytics such as feature extrac-
tion or classification directly on end-nodes does not address
the security concerns. It worsens them: distilled data that
is stored or sent over the network at several stages of the
analytics pipeline is even more privacy-sensitive than the raw
data stream [3], [4]. Protecting sensitive data at the boundary
of the on-chip analytics engine is a way to address these
security issues; however, cryptographic algorithms come with
a significant workload, which can easily be of 100-1000s of
processor instructions per encrypted byte [5].

This security workload is added to the computational effort
imposed by leading feature extraction and classification algo-
rithms, such as deep Convolutional Neural Networks (CNNs).
CNNs are extremely powerful in terms of data analytics, and
state-of-the-art results in fields such as computer vision (e.g.
object detection [6], scene parsing [7], and semantic segmen-
tation tasks [8]) and audio signal analytics [9] have been
demonstrated. While effective, deep CNNs usually necessitate
many billions of multiply-accumulate operations, as well as
storage of millions of bytes of pre-trained weights [10]. The
combined workload necessary to tackle these two limitations
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to the development of smarter IoT - namely, the necessity for
near-sensor analytics and that for security - is formidable,
especially under the limited available power envelope and
the tight memory and computational constraints of deeply
embedded devices. One possible solution is to augment IoT
end-nodes with specialized blocks for compute-intensive data
processing and encryption functions while retaining full soft-
ware programmability to cope with lower computational-
intensity tasks. Specialized processing engines should be
tightly integrated both with the software-programmable cores
and with one another, streamlining the process of data
exchange between the different actors as much as possible
to minimize the time and energy spent in data exchange; at
the same time, to simplify their usage from the developer’s
perspective, it should be possible to abstract them, integrat-
ing them in standard programming models used in software
development for IoT-aware platforms.

In this work, we propose the 65 nm Fulmine secure data
analytics System-on-Chip (SoC), which tackles the two main
limiting factors of IoT end-nodes while providing full pro-
grammability, low-effort data exchange between processing
engines, (sufficiently) high speed, and low energy. The SoC
is based on the architectural paradigm of tightly-coupled
heterogeneous shared-memory clusters [11], where several
engines (which can be either programmable cores or special-
ized hardware accelerators) share the same first-level scratch-
pad via a low-latency interconnect. In Fulmine, the engines
are four enhanced 32-bit OpenRISC cores, one highly effi-
cient cryptographic engine for AES-128 and KECCAK-based
encryption, and one multi-precision convolution engine spe-
cialized for CNN computations. Due to their memory sharing
mechanism, cores and accelerators can exchange data in a
flexible and efficient way, removing the need for continuous
copies between cores and accelerators. The proposed SoC
performs computationally intensive data analytics workloads
with no compromise in terms of security and privacy, thanks
to the embedded encryption engine. At the same time, Ful-
mine executes full complex pipelines including CNN-based
analytics, encryption, and other arbitrary tasks executed on
the processors.

This claim is exemplified in three practical use cases:
secure autonomous aerial surveillance in a nano-Unmanned
Aerial Vehicle (nano-UAV) consuming 3.16 pJ per equivalent
reduced instruction set computer (RISC) operation; on-device
CNN-based face detection (as part of a recognition pipeline)
with 5.74 pJ per operation, including image encryption for
external face recognition; and seizure detection with secure
data collection within 12.7 pJ per operation. We show that on
a workload consisting of balanced contributions from CNNs,
AES, and other SW-implementable filters, Fulmine provides
the best result in terms of pJ-per-equivalent-RISC-operation,
with the nearest state-of-the-art platform in terms of efficiency
needing 89× more time to execute the workload.

The rest of this paper is organized as follows: in Section II
we compare Fulmine with the state-of-the-art in low-power
IoT computing devices. Section III describes the architecture
of the SoC; cluster-coupled HW coprocessors are detailed in
Section IV. Section V evaluates the implementation results and
overall performance, while Section VI focuses on real-world
use cases. Section VII concludes the paper.

II. STATE-OF-THE-ART AND RELATED WORK

A. Low-Power Encryption Hardware IPs

Authenticated encryption is a hot topic in the crypto-
graphic community since it adds additional services on top
of data confidentiality. AES in the Galois Counter Mode [12]
(AES-GCM) is one of the most used authenticated encryption
schemes today. For example, Intel added a dedicated finite
field multiplication to the AES-NI extension, with a throughput
up to 1.03 cpb [13]. However, solutions of this kind are
clearly targeting a different scenario from small, low-power
IoT devices.

Only a few IoT-oriented commercial AES controllers
are available; an example is the Maxim MAXQ1061 [14],
claiming up to 20 Mbit/s (power consumption data is not
currently disclosed). Research AES accelerators in the
sub-100 mW range for the IoT domain have been proposed by
Mathew et al. [15] in Intel 22nm technology, Zhang et al. [16]
in TSMC 40 nm and Zhao et al. [17] in 65 nm; the latter
reaches efficiency up to 620 Gbit/s/W thanks to efficient
body biasing and a statistical design flow targeted at reducing
worst-case guard bands. A device consuming as little as
0.25 μW for passive RFID encryption has been proposed by
Hocquet et al. [18]. The main differentiating point between our
contribution and these hardware encryption techniques is the
tightly coupled integration within a bigger low-power system.

B. Low-Power CNN Hardware IPs

The most common way to accelerate CNNs is to rely on
powerful GP-GPUs [7], [19] or on FPGAs [20], [21].

Some programmable embedded platforms such as
ODROID-XU [22], or Movidius Myriad 2 [23] improve the
energy efficiency of software CNN implementations to up to
120 Gop/s/W within a few Watts of power envelope, targeting
embedded systems such as smartphones or UAVs as well as
the booming autonomous car business [24].

While these platforms are typically powerful enough
for embedded scenarios that are not significantly power-
constrained (e.g. deep-learning driven autonomous driving),
we do not consider them directly comparable to our proposal,
since they cannot be used in low-power endnodes: their
efficiency is relatively low (up to tens of GMAC/s/W for
most GPU and FPGA implementations) and their peak power
envelope is typically too high, up to ∼10 W - 100× the
typical envelope considered for endnodes. To the best of our
knowledge, the only deep neural network commercial solution
specifically designed for IoT end-nodes is WiseEye, to be
presented by CEVA at CES 2017 [25].

Most research architectures for acceleration of CNNs have
focused on specialized architectures to accelerate convolu-
tional layers (e.g. Origami [26]), or convolutional and pooling
layers (e.g. ShiDianNao [27] and Eyeriss [28]). These accel-
erators reach efficiencies in the order of a few hundreds of
equivalent Gop/s/W. However, they all rely on highly spe-
cialized architectures, their flexibility is limited, and most of
them are not capable of implementing the other functionality
required by IoT end-nodes, including security and general-
purpose signal processing tasks.

One big differentiating point between these platforms are
their assumptions in terms of algorithmic and arithmetic accu-
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racy. Sim et al. [29] rely on 24bit fixed-point arithmetics, but
they approximate weights using a low-dimensional representa-
tion based on PCA. Most other works use either 16 bits [30],
[31] or 12 bits [26]. However, recent algorithmic developments
such as BinaryConnect [32] suggest that it is possible to
reduce CNN weight precision down to a single bit with limited
accuracy losses. This has been exploited in platforms such
as YodaNN [33] to reach efficiency in the order of tens of
equivalent Top/s/W. Another promising approach to improve
energy efficiency in classification tasks are extreme learning
machines (ELM), based on single-hidden layer feedforward
neural networks. Although they have been proven to consume
as little as 0.47 pJ/MAC [34], [35], their applicability to real-
life applications is still restricted to very simple problems.

In this work a flexible approach has been adopted, where the
precision of images is fixed to 16 bits, while that of weights
can be scaled from 16 to 4 bits. This approach avoids the
requirement of specific training for binary connected networks,
while weight precision can be scaled according to the specific
application requirements in terms of accuracy, throughput and
energy efficiency.

C. End-Node Architectures

Traditional end-node architectures for the IoT leverage tiny
microprocessors, often Cortex-M0 class, to deal with the
extreme low-power consumption requirements of applications.
Several commercial solutions have been proposed, among
the others, by TI [36], STMicroelectronics [37], NXP [38],
and Ambiq [39], leveraging aggressive duty-cycling and sub-
10 μW deep-sleep modes to provide extremely low power
consumption on average. Other recent research platforms
optimize also the active state, exploiting near-threshold or sub-
threshold operation to improve energy efficiency and reduce
power consumption during computation [40]–[43].

Some commercial architectures leverage lightweight SW
acceleration and optimized DSP libraries to improve perfor-
mance. The NXP LPC54100 [38] is a commercial platform
where a big Cortex-M4F core acts as an accelerator for a little
ultra-low-power Cortex-M0 targeted at always-on applications.
From a software viewpoint, some optimized libraries have
been developed to efficiently implement crypto algorithms
on Cortex-M3 and M4 architectures, given the criticality of
this task for IoT applications. Examples of these libraries are
SharkSSL [44] and FELICS [5], able to encrypt one block of
AES-128-ECB in 1066 cycles and 1816 cycles respectively,
both targeting a Cortex-M3. On the other hand, CMSIS [45]
is a well-known set of libraries to optimize DSP performance
on Cortex-M architectures.

However, even with software-optimized libraries, these tiny
micro-controllers are unfortunately not suitable for secure
near-sensor analytics applications using state-of-the-art tech-
niques, which typically involve workloads in the orders of
billions of operations per second. For this reason, a few
recent SoCs couple programmable processors with hardwired
accelerators, to improve execution speed and energy efficiency
in cryptography and other performance-critical tasks. In the
field of embedded vison, heterogeneous SoCs of this kind
include the one recently proposed by Renesas [46], coupling
a general purpose processor with an FPU, a DSP, and a
signal processing accelerator. Intel [47] proposed a 14 nm SoC

Fig. 1. Fulmine SoC architecture. The SOC domain is shown in shades of
blue, the CLUSTER domain in shades of green.

where a small core with light signal processing acceleration
cooperates with a vision processing engine for CNN-based
feature extraction and a light encryption engine, within a
22 mW power budget. Pullini et al. proposed Mia Wallace,
a heterogeneous SoC [48] coupling four general purpose
processors with a convolutional accelerator. In the field of
bio-signals processing, Konijnenburg et al. [49] proposed a
multichannel acquisition system for biosensors, integrating
a Cortex-M0 processor and accelerators for digital filtering,
sample rate conversion, and sensor timestamping. Lee and
Verma [50] presented a custom bio-signals processor that inte-
grates configurable accelerators for discriminative machine-
learning functions (i.e. SVM and active learning) improving
energy by up to 145x over execution on CPU.

Similarly to the presented designs, Fulmine is a low-power,
heterogeneous MPSoC. In contrast to the other architectures
presented here, it tackles at the architectural level the challenge
of efficient and secure data analytics for IoT end-nodes,
while also providing full programmability with sufficient high
performance and low power to sustain the requirements of
several near-sensor processing applications.

III. SOC ARCHITECTURE

The Fulmine multi-core System-on-Chip (Figure 1) imple-
ments a secure near-sensor data analytics architecture, which
leverages highly efficient processors for software program-
mable signal processing and control, flexible hardware accel-
eration for cryptographic functions, convolutional neural
networks, and a highly optimized subsystem implementing
power management and efficient communication and synchro-
nization among cluster resources. The architecture, based on
the PULP platform [51], is organized in two distinct voltage
and frequency domains, CLUSTER and SOC, communicating
through an AXI4 interconnect and separated by dual-clock
FIFOs and level shifters. Two frequency-locked loops (FLLs)
are used to generate clocks for the two domains, which rely on
separate external voltage regulators for their supply and can
be independently power-gated.
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The FLLs work with a 100 kHz external reference clock and
support fast switching between different operating modes (less
than 10 reference cycles in the worst case).

The CLUSTER domain is built around six processing ele-
ments (four general-purpose processors and two flexible accel-
erators) that share 64 kB of level 1 Tightly-Coupled Data
Memory (TCDM), organized in eight word-interleaved SRAM
banks. A low-latency logarithmic interconnect [52] connects
all processing elements to the TCDM memory, enabling fast
and efficient communication among the resources of the
cluster. The TCDM interconnect supports single-cycle access
from multiple processing elements to the TCDM banks; if
two masters attempt to access the same bank in the same
clock cycle, one of them is stalled using a starvation-free
round-robin arbitration policy. The two hardware accelerators,
Hardware Cryptography Engine (HWCRYPT) and Hardware
Convolution Engine (HWCE), can directly access the same
TCDM used by the cores. This architecture allows data to be
seamlessly exchanged between cores and accelerators, without
requiring explicit copies and/or point-to-point connections.
To avoid a dramatic increase in the area of the TCDM
interconnect, as well as to keep the maximum power envelope
in check, the two accelerators share the same set of four
physical ports on the interconnect. The two accelerators are
used in a time-interleaved fashion, allowing one accelerator
full access to the TCDM at a time, which is suitable for data
analytics applications where computation can be divided into
several separate stages.

The four OR10N cores are based on an in-order, single-
issue, four stage pipeline, implementing the OpenRISC [53]
instruction set architecture (ISA), improved with extensions
for higher throughput and energy efficiency in parallel signal
processing workloads [54]. GCC 4.9 and LLVM 3.7 toolchains
are available for the cores, while OpenMP 3.0 is supported
on top of the bare-metal parallel runtime. The cores share
a single instruction cache of 4 kB of Standard Cell Mem-
ory (SCM) [55] that can increase energy efficiency by up to
30% compared to an SRAM-based private instruction cache
on parallel workloads [56]. The ISA extensions of the core
include general-purpose enhancements (automatically inferred
by the compiler), such as zero-overhead hardware loops and
load and store operations embedding pointer arithmetic, and
other DSP extensions that can be explicitly included by means
of intrinsic calls. For example, to increase the number of effec-
tive operations per cycle, the core includes single instruction
multiple data (SIMD) instructions working on 8 bit and 16 bit
data, which exploit 32 bit registers as vectors. Furthermore,
the core is enhanced with a native dot-product instruction
to accelerate computation-intensive classification and signal-
processing algorithms. This single-cycle operation supports
both 8 bit and 16 bit vectors using two separate datapaths
to reduce the timing pressure on the critical path. Fixed
point numbers are often used for embedded analytics and
signal processing applications; for this reason, the core has
also been extended with single-cycle fixed point instructions
including rounded additions, subtractions, multiplications with
normalization, and clipping instructions.

The cluster features a set of peripherals including a direct
memory access (DMA) engine, an event unit, and a timer. The
processors can access the control registers of the hardware

accelerators and of the other peripherals through a mem-
ory mapped interface implemented as a set of private, per-
core demultiplexers (DEMUX), and a peripheral interconnect
shared among all cores.

The peripheral interconnect implements the same architec-
ture of the TCDM interconnect, featuring a different address-
ing scheme to provide 4 kB of address map for each peripheral.

The DMA controller available in the cluster is an evolution
of the one presented in [57], and enables fast and flexible
communication between the TCDM and the L2 memory
trough four dedicated ports on the TCDM interconnect and
an AXI4 plug on the cluster bus.

In contrast to traditional memory mapped interfaces, access
to the internal DMA programming registers is implemented
through a sequence of control words sent to the same address,
significantly reducing DMA programming overheads (i.e. less
then 10 cycles to initiate a transfer, on average). The DMA
supports up to 16 outstanding 1D or 2D transfers to hide
L2 memory latency and allows 256 byte bursts on the 64-bit
AXI4 interface to guarantee high bandwidth. Once a transfer is
completed, the DMA generates an event to the cores that can
independently synchronize on any of the enqueued transfers by
checking the related transfer ID on the DMA control registers.
Synchronization of DMA transfers and hardware accelerated
tasks is hardware-assisted by the event unit. The event unit can
also be used to accelerate the typical parallelization patterns
of the OpenMP programming model, requiring, for example,
only 2 cycles to implement a barrier, 8 cycles to open a
critical section, and 70 cycles to open a parallel section. These
features are all essential to guarantee high computational
efficiency during execution of complex tasks such as CNNs in
Fulmine, as detailed in Section IV.

The SOC domain contains 192 kB of L2 memory for data
and instructions, a 4 kB ROM, a set of peripherals, and a power
management unit. Furthermore, the SOC includes a (quad) SPI
master, I2C, I2S, UART, GPIOs, a JTAG port for debug, and
a (quad) SPI slave that can be used to access all the SoC
internal resources. An I/O DMA subsystem (uDMA) allows
to autonomously copy data between the L2 memory and the
external interfaces, even when the cluster is in sleep mode.
This mechanism allows us to relieve cores from the frequent
control of peripherals necessary in many microcontrollers, and
to implement a double buffering mechanism both between
IOs and L2 memory and between L2 memory and TCDM.
Therefore, I/O transfers, L2 memory to TCDM transfers, and
computation phases can be fully overlapped.

A sophisticated power management architecture distributed
between the SOC and CLUSTER domains can completely
clock-gate all the resources when idle, as shown in Figure 2
(idle mode with FLL on). The power manager can also be
programmed to put the system in a low power retentive state
by switching down the FLLs and relying on the low-frequency
reference clock (low freq and idle mode). Finally, it can be
used to program the external DC/DC converter to fully power-
gate the CLUSTER domain. The event unit is responsible for
automatically managing the transitions of the cores between
the active and idle state.

To execute a wait-for-event instruction, the cores try to read
a special register in the event unit; this load is kept stalled
until the event comes so that the core pipeline is stalled in a
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Fig. 2. Fulmine power management architecture and power modes.

known state. After pending transactions and cache refills are
complete, the event unit gates the core clock.

The clock gating manager gates the cluster clock if the idle
mode is selected and no engine is busy, or it activates the
handshaking mechanism with the external regulator to power
gate the cluster if the deep-sleep mode is selected. Once the
wake-up event reaches the power management unit, the latter
reactivates the cluster, then it forwards the event notification
to the event unit, waking up the destination core on turn.

Figure 2 reports all the power modes along with their
average wakeup time and power consumption, divided between
the CLUSTER and SOC domains.

As the CLUSTER and SOC power domains are managed
independently, it is possible to transparently put the CLUSTER

in idle, where it consumes less than 1 mW, when waiting
for an event such as the end of an I/O transfer to L2 or an
external interrupt that is expected to arrive often. It is possible
to partially trade off wakeup time versus power by deciding
whether to keep the FLLs active in idle mode: by paying
a ∼400 μW cost, wakeup time is reduced to essentially a
single clock cycle (20 ns), versus a maximum of 10 reference
cycles (∼320 μs) if the FLL is off. The deep sleep mode
instead enables efficient duty cycling in the case computing
bursts are relatively rare, by completing power-gating the
CLUSTER domain and keeping the SOC domain in a clock-
gated, retentive state.

IV. CLUSTER-COUPLED ACCELERATOR ENGINES

In this Section we describe in detail the architecture of
the two cluster-coupled accelerator engines, HWCRYPT and
HWCE. The main purpose of these engines is to provide
a performance and efficiency boost on computations, and
they were designed to minimize active power, e.g. by using
aggressive clock gating on time-multiplexed sub-modules and
by making use of latches in place of regular flip-flops to
implement most of the internal buffering stages.

The shared-memory nature of the HWCRYPT and HWCE
accelerators enables efficient zero-copy data exchange with the
cores and the DMA engine, orchestrated by the cluster event
unit. This architecture enables complex computation patterns
with frequeny transfers of data set tiles from/to memory.
A typical application running on the Fulmine SoC operates
conceptually in the following way. First, the input set (e.g. a
camera frame) is loaded into the L2 memory from an external
I/O interface using the uDMA. The cluster can be left in sleep
mode during this phase and woken up only at its conclusion.

Fig. 3. HWCRYPT datapath overview, with details of the AES-128 and the
sponge engine.

The input set is then divided into tiles of appropriate dimension
so that they can fit in the L1 shared TCDM; one tile is loaded
into the cluster, where a set of operations are applied to it either
by the SW cores or the HW accelerators. These operations
can include en-/decryption and convolutions (in HW), plus
any SW-implementable filter. The output tiles are then stored
back to L2 memory using DMA transfers, and computation
continues with the next tile. Operations such as DMA transfers
can typically be overlapped with computation by using double
buffering to reduce the overall execution time.

A. Hardware Encryption Engine

The Hardware Encryption Engine (HWCRYPT), as shown
in Figure 3, implements a dedicated acceleration unit for a
variety of cryptographic primitive operations, exploiting the
advantages of the shared memory architecture of the SoC. The
HWCRYPT is based on two parallel cryptographic engines,
one implementing the AES-128 [58] block cipher and the
other one implementing the KECCAK- f [400] [59] permuta-
tion (a smaller version of the SHA-3 permutation) used in
a flexible sponge construction. The AES-128 engine includes
two instances of a round-based AES-128 design with a shared
on-the-fly round-key computation module. Each of the two
AES-128 instances is based on two cipher rounds supporting
both encryption and decryption. The round-key generator
keeps track of the last round-key during encryption operations,
which acts as the starting point to generate round-keys for a
decryption operation. The AES-128 engine of the HWCRYPT
implements the Electronic-Code-Book (ECB) mode as well
as the XEX-based tweaked-codebook mode with ciphertext
stealing (XTS) [60]. XTS uses two different encryption keys,
one to derive the initial tweak and the other one to encrypt the
data. When using the same key for deriving the initial tweak
and encrypting the data, the encryption scheme is changed
to XEX [61] without implications to the overall security.
Furthermore, the accelerator supports the individual execution
of a cipher round similar to the Intel AES-NI instructions [62]
to boost the software performance of other new AES round-
based algorithms [63], [64].

Although AES-128-ECB is a fast encryption mode, it is not
recommended to use it to encrypt larger blocks of data. Since
every block is encrypted independently using the same key,
the same plaintext always yields the same ciphertext, which
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reveals patterns of the plaintext in the ciphertext. To overcome
this issue, the AES-128-XTS mode uses a so-called tweak
T to modify the encryption for each block. The encryption
function E in the block diagram denotes an AES-128-ECB
encryption with the key K1 and K2 respectively. The tweak
is XORed to the plaintext and to the resulting ciphertext of
the AES-128-ECB encryption. Since the tweak is different for
each block of plaintext, it is denoted as Ti for the i-th block
of data. The initial tweak T0 is computed by encrypting the
sector number SN , derived from the address of the data, using
the encryption key K1 and multiplying it with αi with i = 0.
The multiplication with αi ensures that the tweak is different
for each block.

The XTS mode is defined by Equation 1:

Ti = EK1(SN) ⊗ αi

Ci = EK2(Pi ⊕ Ti ) ⊕ Ti (1)

The address-dependent tweak Ti is derived by a multipli-
cation between the initial tweak and αi . The multiplication
is performed in the finite Galois field1 GF

(
2128

)
defined by

the irreducible polynomial x128 + x7 + x2 + x + 1. AES-128-
XTS requires a 128-bit finite field multiplier and exponentiator,
which is rather complex in terms of VLSI implementation. To
reduce this complexity, we first observe that α is constant with
the recommended value α = 2.

Ti is derived from Ti−1 as a one-bit shift with a conditional
XOR with the irreducible polynomial, i.e. Ti = Ti−1 ⊗ 2,
which implements the multiplication by 2 in the Galois field
G F(2128).

The sponge engine implements two instances of the KEC-
CAK- f [400] permutation, each based on three permutation
rounds. KECCAK- f [400]’s architecture is optimized to match
the length of the critical path of the AES-128 engine. Permu-
tations support a flexible configuration of the rate and round
parameters. The rate defines how many bits are processed
within one permutation operation, and it can be configured
from 1 bit to 128 bits in powers of two. This parameter
supports a trade-off between security and throughput. The
more bits are processed in one permutation call, the higher the
throughput - but with a cost regarding the security margin of
the permutation. The round parameter configures the number
of KECCAK- f [400] rounds applied to the internal state. It can
be set up as a multiple of three or for 20 rounds as defined
by the specification of KECCAK- f [400]. The two instances
of permutations are combined to implement an authenticated
encryption scheme based on a sponge construction with a
prefix message authentication code that additionally provides
integrity and authenticity on top of confidentiality.

In the sponge construction for encryption, the initial state
of the sponge is filled with the key K and the initial vec-
tor I V . After executing the KECCAK- f [400] permutation p,
we sequentially squeeze an encryption pad and apply the
permutation function to encrypt all plaintext blocks Pi via an
XOR operation. Apart from this favorable mode of operation,
the sponge engine also provides encryption without authentica-
tion and direct access to the permutations to allow the software
to accelerate any KECCAK- f [400]-based algorithm.

1In the following, ⊗ denotes the 128-bit finite field multiplication in which
also the exponentiation is performed.

The HWCRYPT utilizes two 32 bit memory ports of
the TCDM interconnect, while an internal interface performs
the conversion from 32 bit to the 128 bit format used by the
encryption engines. The system is designed so that memory
interface bandwidth matches the requirements of all cipher
engines. The HWCRYPT is programmed and started through
a dedicated set of configuration registers, which allows the
reconfiguration of a new encryption operation while the
HWCRYPT is busy by using a command queue that sup-
ports up to four pending operations. The current state of
the HWCRYPT can be monitored via status registers. The
accelerator supports a flexible event and interrupt system to
indicate when one or all operations have finished.

B. Hardware Convolution Engine

The Hardware Convolution Engine (HWCE) is based on
a precision-scalable extension of the design proposed by
Conti and Benini [30] to accelerate convolutional layers in
deep CNNs. These layers, which constitute the overwhelming
majority of computation time in most CNNs [7], are composed
of a linear transformation that maps Nif input feature maps into
Nof output feature maps by means of a set of convolutional
filters; and a pointwise non-linear activation function, often
a rectifier (ReLU) . The linear part of convolutional layers
is usually the dominant operation by far; its typical form for
kof ∈ 0 · · · Nof − 1 is the following:

y(kof) = b(kof ) +
Nif −1∑

kif =0

(
W(kof , kif ) ∗ x(kif)

)
. (2)

The specific task executed by the HWCE is the acceleration
of the accumulation of convolutions that are at the core of
Equation 2. To represent input/output pixels and weights,
a fixed-point data representation with 16 bits is used by default.
The number of fractional bits is configurable at run time.
HWCE can natively perform 5×5 and 3×3 convolutions, and
any arbitrary convolution by combining these two in software.
The key novelty in the HWCE design with respect to [30] is
that the Fulmine HWCE can exploit the relative insensitivity
of CNNs to weight approximation [32], [65] by reducing
the arithmetic precision of the convolution weights to 8 or
4 bit. In that case, the internal datapath is reconfigured so that
two or four convolutions respectively (on different output kof

feature maps) are computed simultaneously, while feature map
pixels still use the full 16 bit representation. In these scaled
precision modes, a similar level of accuracy to the 16 bit
full precision CNNs can be maintained by proper training,
with access to significantly improved performance, memory
footprint, and energy efficiency as is shown in Section V.

Figure 4 depicts the HWCE architecture, which can be
divided into three main components: a datapath performing
the main part of the data plane computation in a purely
streaming fashion, relying on an AXIStream-like handshake
for back-pressure; a wrapper that connects and decouples the
datapath streaming domain from the memory-based cluster;
and a controller that provides a control interface for the
accelerator. In the full-precision 16 bit mode, the sum-of-
products datapath is used to perform a convolution between
a preloaded filter W (stored in a weight buffer) and a 5×5
xwin window extracted from a linear x input feature map
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Fig. 4. Fulmine HWCE architecture, with the controller shaded in red, the wrapper in green, and the datapath in blue. The diagram also shows details of
the line buffer and sum-of-products submodules microarchitecture.

stream. Window extraction is performed by a line buffer,
which is realized with latch-based SCMs for optimized energy
efficiency. The line buffer is composed by a set of FIFO queues
with two read pointers: one to implement the mechanism to
pass the oldest pixel to the next FIFO and the other to extract
the 5×5 sliding window. The output of the sum-of-products
is summed to an input pre-accumulated yin value; in other
words, the accelerator needs no internal memory to perform
the feature map accumulation component of Equation 2 but
uses directly the shared memory of the cluster. The wrapper,
shaded in green in Figure 4 is responsible for generating
memory accesses through four memory ports to the TCDM to
feed the accelerator x,yin streams and write back yout (partial)
results. The controller (red in Figure 4) contains a register file
which can host a queue of two jobs, each consisting of pointers
to x, W, y, strides for the wrapper address generators, and
other configuration such as the number of fractional bits to use.
The controller is mapped in the cluster peripheral interconnect.

To support three different possible sizes for weights,
the HWCE sum-of-products datapath must be able to perform
16 bit × 16 bit products as well as 8 bit × 16 bit and 4 bit ×
16 bit ones. The two or four filters hosted in the weight buffer
in scaled precision modes are not consecutive, but they are
interleaved: in full precision mode a location represents a sin-
gle 16 bit weight; in the scaled precision modes, it represents
two 8 bit or four 4 bit weights. The sum-of-products datapath is
designed in a hierarchical way to maximize its reuse between
the three configurations. Four submodules (shown in orange
in Figure 4) compute the sum-of-products of xwin with a
4 bit slice of W each, using a set of signed multipliers and
a first-stage reduction tree. A second-stage reduction tree and
a set of multiplexers are used to combine these four partial
sums-of-products to produce one, two or four concurrent
yout outputs; fractional part normalization and saturation are
also performed at this stage. As multiple accumulations of
convolutions are performed concurrently, the yin and yout
streamers are replicated four times. All HWCE blocks are
aggressively clock gated so that each component consumes
power only when in active use.

V. EXPERIMENTAL EVALUATION

In this Section, we analyze measured performance and effi-
ciency of our platform on the manufactured Fulmine prototype
chips, fabricated in UMC 65 nm LL 1P8M technology, in a
2.62 mm×2.62 mm die.

A. System-on-Chip Operating Modes

An important constraint for the design of small, deeply
embedded systems such as the Fulmine SoC is the maximum
supported power envelope. This parameter is important to
select the system battery and the external DC/DC converter.
To maximize energy efficiency, the worst case for the DC/DC
converter (i.e. the peak power) should not be too far from
the average working power to be delivered. However, a SoC
like Fulmine can operate in many different conditions: in
pure software, with part of the accelerator functionality avail-
able, or with both accelerators available. These modes are
characterized by very different average switching activities and
active power consumption.

In pure software mode, it is often desirable to push fre-
quency as much as possible, while when using accelerators
it can be convenient to relax it to improve power consump-
tion. Moreover, some of the internal accelerator datapaths
are not easily pipelined, as adding pipeline stages severely
hits throughput - this is the case of the HWCRYPT sponge
engine (Section IV-A), which relies on tight loops of KECCAK-
f [400] rounds as visible in the datapath in Figure 3. Relaxing
these paths can improve the overall synthesis results for the
rest of the circuit.

Multi-corner multi-mode synthesis and place & route were
used to define three operating modes that the developer can
statically select for the target application: in the CRY-CNN-SW

mode, all accelerators and cores can be used. In the
KEC-CNN-SW mode, cores and part of the accelerators
can be used: the HWCE fully, the HWCRYPT limited to
KECCAK- f [400] primitives. In this mode, the frequency can
be pushed significantly further than in the CRY-CNN-SW mode.
Finally, in the SW mode, only the cores are active, and
the operating frequency can be maximized. Figure 5 shows
frequency scaling in the three operating modes while varying
the cluster operating voltage VD D. The three modes were
designed so that at VD D = 1.2 V, current consumption
under full load is close to 100 mA (i.e. 120 mW of power
consumption), as can be seen in Figure 5b.

B. HWCRYPT Performance and Power Evaluation

Due to a throughput oriented hardware implementation,
HWCRYPT achieves a significant acceleration compared to
an optimized software implementation running on the Open-
RISC cores. To encrypt one 8 kB block of data using the
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Fig. 5. Cluster maximum operating frequency and power in the CRY-CNN-SW, KEC-CNN-SW, and SW operating modes. Each set of power bars, from left
to right, indicates activity in a different subset of the cluster. KEC-CNN-SW and SW bars show the additional power overhead from running at the higher
frequency allowed by these modes. (a) Cluster maximum frequency in three operating modes. (b) Cluster power at maximum frequency in three operating
modes.

TABLE I

COMPARISON BETWEEN Fulmine AND SEVERAL PLATFORMS REPRESENTATIVE OF THE STATE-OF-THE-ART IN

ENCRYPTION, DATA ANALYTICS, AND IOT END-NODES

AES-128-ECB mode, HWCRYPT requires ∼3100 clock
cycles including the initial configuration of the accelerator.
This is a 450× speedup compared to a software implemen-
tation on one core. When parallelizing the software imple-
mentation to all four cores, the hardware accelerator still
reaches a speedup of 120×. The throughput of HWCRYPT in
AES-128-ECB mode is 0.38 cycles per byte (cpb).

The performance of the AES-128-XTS mode is the same
with respect to the ECB mode, thanks to parallel tweak
computation and encryption. When comparing that to an
optimized software implementation on a single core, this
speeds up the throughput by a factor of 495× and by a factor
287× when running on four cores. It is important to note
that, contrarily to the ECB mode, XTS encryption cannot be
efficiently parallelized in software due to a data dependency
during the tweak computation step.

The authenticated encryption scheme based on
KECCAK- f [400] achieves a throughput of 0.51 cpb by
utilizing both permutation instances in parallel. The first
permutation encrypts the data and the second one is used

to compute the message authentication code to provide
integrity and authenticity. This performance is achieved in a
maximum-rate configuration of 128 bit per permutation call
and 20 rounds as specified by KECCAK- f [400]. Reducing
the rate and/or increasing the number of invoked permuations
decreases the throughput while increasing the security
margin.

In Figure 6a, we present the performance of HWCRYPT
in terms of time and energy per byte, while scaling the
VD D operating voltage of the cluster. When normalizing
these values to the power consumption, we reach a
performance of 67 Gbit/s/W for AES-128-XTS and
100 Gbit/s/W for KECCAK- f [400]-based authenticated
encryption respectively.

C. HWCE Performance and Power Evaluation

The Fulmine SoC includes many distinct ways to perform
the basic operation of CNNs, i.e. 2D convolutions. In software,
a naïve single core implementation of a 5×5 convolution filter
has a throughput of 94 cycles per pixel. Parallel execution
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Fig. 6. Performance and efficiency of the HWCRYPT and HWCE accelera-
tors in terms of time/energy for elementary output. (a) HWCRYPT time/energy
per byte. (b) HWCE time/energy per pixel.

on four cores can provide almost ideal speedup reaching
24 cycles/px. Thanks to the SIMD extensions described in
Section III, an optimized multi-core version can be sped up
by almost 2× down to 13 cycles/px on average.

With respect to this baseline, the HWCE can provide a
significant additional speedup by employing its parallel data-
path, the line buffer (which saves input data fetch memory
bandwidth), and weight precision scaling. We measured aver-
age throughput by running a full-platform benchmark, which
therefore takes into account the overheads for real world usage:
line buffer fill time, memory contention from cores, self-
contention by HWCE inputs/outputs trying to access the same
TCDM bank in a given cycle. Considering the full precision
16 bit mode for the weights, we measured an average inverse
throughput of 1.14 cycles per output pixel for 5×5 convolu-
tions and 1.07 cycles per output pixel for 3×3 convolutions -
the two sizes directly supported by the internal datapath of the
HWCE. This is equivalent to a 82× speedup with respect to
the naïve single core baseline, or 11× with respect to a fully
optimized 4-core version.

As described in Section IV-B, the HWCE datapath enables
application-driven scaling of arithmetic precision in exchange
for higher throughput and energy efficiency. In the 8 bit
precision mode, average inverse throughput is scaled to
0.61 cycles/px and 0.58 cycles/px for the 5×5 and 3×3 fil-
ters, respectively; in 4bit mode, this is further improved to
0.45 cycles/px and 0.43 cycles/px, respectively. In the 4 bit
precision mode, the HWCE is fully using its 4-port memory
bandwidth towards the TCDM in order to load 4 yin partial
results and store back 4 yout ones. Further performance scaling
would therefore require an increase in memory bandwidth.
Figure 6b reports time and energy per pixel, running the same
set of filters in the KEC-CNN-SW operating mode while scaling
the VD D operating voltage. At 0.8 V, the energy to spend for
an output pixel can be as low as 50 pJ per pixel, equivalent
to 465 GMAC/s/W for a 5×5 filter.

D. Comparison with State-of-the-Art

Table I compares Fulmine with the architectures that define
the boundaries of the secure data analytics application space

Fig. 7. A Fulmine SoC connected to 16 MB of Flash, 2 MB of FRAM, and
sensors (the grey area is taken into account for power estimations).

described in described in Section II. Apart from area, power
and performance, we also use an equivalent energy efficiency
metric defined as the energy that a platform has to spend
to perform an elementary RISC operation2 the workload
presented in Section VI-B, which provides a balanced mix
of encryption, convolution, other SW-based filters.. Fulmine
achieves the highest result on this metric, 5.74 pJ per oper-
ation, thanks to the cooperation between its three kinds
of processing engines. The second-best result is of Sleep-
Walker (6.99 pJ) - but in an operating point where execution
takes 89× more time than in the case of Fulmine.

Moreover, Fulmine provides better area efficiency than what
is available in other IoT end-nodes:

32 SleepWalker chips would be needed to achieve the same
performance as Fulmine in the workload of Section VI-B.
On the other hand, while coupling an efficient IoT microcon-
troller with external accelerators can theoretically provide an
effective solution, this would require continued data exchange
between the devices for most of the secure data analytics
scenarios for IoT devices but it requires continuous high-
bandwidth data exchange from chip-to-chip, which is typically
not practical in low-power systems.

Conversely, in Fulmine HW accelerators are coupled to the
cluster cores via the shared L1 memory, and no copy at all is
required - only a simple pointer exchange.

For IoT endnodes, the smaller footprint of a System-on-
Chip solution can also provide an advantage with respect to
a traditional system on board, which is heavier and bulkier.
Taking this reasoning one step further, while it is not always
possible to place sensors and computing logic on the same
die, the system we propose could be coupled to a sensor in a
System-on-Package solution, requiring only a single die-to-die
connection. Competing systems listed in Table I would require
the integration of more than two dies on the same package,
resulting in a more complex and expensive design.

VI. USE CASES

To evaluate the Fulmine SoC in full end-to-end applica-
tions, we propose three distinct use cases, which represent
a necessarily incomplete selection of possible security- and
performance-critical IoT sensor analytics applications. The
first use case represents deep-learning based sensor analytics
workloads that are predominantly executed locally on the
endnode, but require security to access unsafe external mem-
ory (secure autonomous aerial surveillance, Section VI-A);
the second one represents workloads executed only in part on
the endnode, which therefore require secured connectivity with

2This is computed as the total energy per instruction on
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an external server (local face detection and remote recognition,
Section VI-B). Finally, the third use case represents workloads
in which, while analytics is performed online, data must also
be collected for longer term monitoring (seizure detection and
monitoring, Section VI-C).

For our evaluation, we consider the system shown in
Figure 7.

We use two banks (16 MB) of Microchip SST26VF064 bit
quad-SPI flash memory to host the weights for a deep
CNN as ResNet-20; each bank consumes down to 15 μA
in standby and a maximum of 15 mA@3.6 V in QPI mode.
Moreover, we use 2 MB of non-volatile Cypress CY15B104Q
ferroelectric RAM (FRAM) as a temporary memory for partial
results. Four banks are connected in a bit-interleaved fashion
to allow access with quad-SPI bandwidth. Both the FRAM and
the flash, as well as a camera and an ADC input, are connected
to the Fulmine uDMA, which can be used to transfer data
to/from the SoC L2 memory. The cluster then transfers tiles
of the input data to operate on and writes results back to L2 via
DMA transfers.

We focus on the power spent for actual computation rather
than on system power, i.e. we include power spent in transfers
from memory used during the computation, but exclude data
acquisition/transmission.3

A. Secure Autonomous Aerial Surveillance

For the secure autonomous aerial surveillance use case,
we consider deploying the system of Figure 7 on a low-
power nano-UAV such as a CrazyFlie nano quadcopter [66].
Storms of tens or hundreds of these devices could provide
diffused, fully autonomous, and low energy footprint aerial
surveillance.

In these vehicles the power budget for computing is
extremely limited (more than 90% of the battery must be
dedicated to the quadrotor engines), and continuous wireless
data transmission from cameras is not an option due to its
power overhead. Local elaboration and transmission of high-
level labeling information provides a more efficient usage of
the available power, while also granting greater availability in
situations like disaster relief, where wireless propagation might
be non-ideal and enable only low-bandwidth communication.

Deployment of state-of-the-art deep CNNs on these devices
naturally requires external memory for the storage of weights
and partial results. These memories cannot be considered to
be secure, as the weights deployed in the Flash are an impor-
tant intellectual property and UAVs are fully autonomous,
therefore vulnerable to malicious physical hijacking . Partial
results stored in the FRAM and SPI traffic could be mon-
itored or modified by an external agent, with the purpose
of changing the final result classified by the UAV. Strong
encryption for weights and partial results can significantly
alleviate this issue, at the cost of a huge overhead on top of
the pure data analytics workload.

3We measured performance on each kernel composing the three applications
and for SPI and DMA transfers via RTL simulation, and the related power
consumption by direct measurement using an Advantest SoCV93000 inte-
grated circuit tester, encapsulating the target kernel within an infinite loop.
Power is measured at two distinct frequencies to obtain leakage and dynamic
power density via linear regression. For external memories, we used publicly
available data from their datasheets, considering always the worst case.

Here we consider a deep ResNet-20 CNN [10] to clas-
sify scenes captured from a low power sensor producing
a 224×224 input image. ResNet-20 has been shown to be
effective on CIFAR-10 classification but can also be trained for
other complex tasks, and it is in general a good representative
of state-of-the-art CNNs of medium size. It consists of more
than 1.35 × 109 operations, a considerable workload for a
low power end-node. External memories are required for
both weights (with a footprint of 8.9 MB considering 16 bits
of precision) and partial results (with a maximum footprint
of 1.5 MB for the output of the first layer). All weights
and partial results are en-/decrypted with AES-128-XTS; the
Fulmine cluster is considered the only secure enclave in which
decrypted data can reside.

Figure 8 shows execution time and energy spent at 0.8 V
for this compound workload. We exploit the fast frequency
switching capabilities of Fulmine to dynamically switch from
the CRY-CNN-SW operating mode (at 85 MHz) when executing
AES to the KEC-CNN-SW operating mode (at 104 MHz) when
executing other kernels. The figure also shows a breakdown
of energy consumption regarding kernels (convolution CONV,
encryption AES), densely connected CNN layers (DENSE),
DMA transfers and other parts of the CNN (DMA, OTHER),
and external memories and I/O (FRAM, FLASH, SPI I/O).
In the baseline, where all the workload is run in software on
a single core, energy consumption is entirely dominated by
convolutions and encryption, with a 4-to-1 ratio between the
two. When more features of the Fulmine SoC are progressively
activated, execution time is decreased by 114× and energy
consumption by 45×, down to 27 mJ in total - 3.16 pJ
per equivalent operation (defined as an equivalent OpenRISC
instruction from [53]). When CNNs use the HWCE with 4 bit
weights and AES-128-XTS uses the HWCRYPT, the overall
energy breakdown shows that cluster computation is no longer
largely dominant, counting for only slightly more than 50%
of the total energy.

Additional acceleration would likely require expensive hard-
ware (e.g. more sum-of-products units or more ports in the
HWCE) and would yield diminishing returns in terms of
energy efficiency.

To concretely estimate whether the results make it feasi-
ble to deploy a ResNet-20 on a nano-UAV, consider that a
CrazyFlie UAV [66] can fly for up to 7 minutes. Contin-
uous execution of secure ResNet-20 during this flight time
corresponds to a total of 235 iterations in the operating point
considered here. This would consume a total of 6.4 J of energy
- less than 0.25% of the 2590 J available in the onboard battery
- and the low peak power of 24 mW makes this concretely
achievable in an autonomous device.

B. Local Face Detection With Secured Remote Recognition
Complete on-device computation might not be the most

advantageous approach for all applications, particularly for
those that can be clearly divided in a lower effort triggering
stage and a higher effort one that is only seldom executed.
A good example is the problem of face recognition. While
state-of-the-art face recognition requires a significant workload
in the order of billions of operations (e.g. FaceNet [68]),
the problem can be easily decomposed in two stages: one
where the input image is scanned to detect the presence of a
face, and another where the detected faces are recognized. The
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Fig. 8. Secure autonomous aerial surveillance use case based on a ResNet-20 CNN [10] with AES-128-XTS encryption for all weights and partial results.
KEC-CNN-SW and CRY-CNN-SW operating modes at VDD = 0.8 V.

Fig. 9. Local face detection, secured remote recognition use case based on the 12-net and 24-net CNNs from Li et al. [67] on a 224×224 input image, with
full AES-128-XTS encryption of the image if a potential face is detected. CRY-CNN-SW operating mode at VDD = 0.8 V. We consider that the first stage
12-net classifies 10% of the input image as containing faces, and that the second stage 24-net is applied only to that fraction.

first stage could be run continuously on a low-power wearable
device such as a smartwatch, using an external device (e.g. a
smartphone, the cloud) to compute the much rarer and much
more complex second stage.

We envision Fulmine to be integrated into an ultra-low
power (ULP) smartwatch platform similar to that presented
in Conti et al. [69]. We consider a similar camera with
the one used in Section VI-A producing a 224×224 input
image. Face detection is performed locally, using the first two
stages (12-net and 24-net) of the multi-stage CNN proposed
by Li et al. [67]. If faces are detected by this two-stage
CNN, the full input image is encrypted and transferred to a
coupled smartphone for the recognition phase. The networks
are applied to small separate 24×24 windows extracted from
the input image; partial results need not be saved from one
window to the next. Therefore the CNN does not use any
external memory and can rely exclusively on the internal L2.

Figure 9 reports the experimental results for the local face
detection use case in terms of energy and execution time.
Baseline energy is almost evenly spent between convolutions,
AES-128-XTS encryption, and densely connected CNN layers.
Software optimizations such as parallelization, SIMD exten-
sions are much more effective on convolutional and dense
layers than they are on AES, due to highly parallel and regular
structure and to XTS internal data dependencies in the tweak
computation. Using hardware accelerators essentially reduces
the energy cost of convolution and on AES-128-XTS to less
than 10% of the total, and leads to a 24× speedup and a
13× reduction in energy with respect to the baseline. With
all optimizations, face detection takes 0.57 mJ or 5.74 pJ per
elementary operation.

This face detection could be performed with no interruption
for roughly 1.6 days before exhausting the battery charge,
if we consider a small 4 V 150mAh lithium-ion polymer bat-
tery. Duty cycling, taking advantage of the power management
features of the SoC described in Section III, can prolong this
time considerably.

Fig. 10. EEG-based seizure detection and secure data collection. CRY-CNN-
SW operating mode at VDD = 0.8 V.

C. Seizure Detection and Secure Long-Term Monitoring

Extraction of semantically relevant information out of
biosignals such as electromyogram (EMG), electrocardio-
gram (ECG), and electroencephalogram (EEG) is a potentially
huge market for low-power footprint IoT devices. In this
use case, Here we consider a seizure detection healthcare
application based on a support vector machine (SVM) trained
on energy coefficients extracted from the principal components
analysis (PCA) of a multi-channel EEG signal [70], [71]. The
sampling frequency is 256 Hz with 50% overlapped windows,
i.e. seizure detection is performed every 0.5 s. Starting from a
256-sample window of 23 input EEG channels (represented
as 32 bit fixed-point numbers), PCA is applied to extract
9 components, that are then transformed by a digital wavelet
transform (DWT) to extract energy coefficients, which are
classified by an SVM.

For long-term monitoring, the components produced by
the PCA have to be collected and sent to the network to
be stored or analyzed, which requires encryption due to the
sensitivity of this data.

Figure 10 shows the results in terms of energy (split down
between the various kernels) and execution time. Several
components of PCA, like diagonalization, are not amenable to
parallelization. Nonetheless, we observe a 2.6× speedup with
four cores excluding AES encryption. Using the HWCRYPT,
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encryption becomes a transparent step of the algorithm and
essentially disappears from the overall energy breakdown.
Therefore, with combined SW parallelization and accelerated
encryption, an overall 4.3× speedup and 2.1× energy reduc-
tion can be achieved. More importantly, the absolute energy
consumption of 0.18 mJ (12.7 pJ per operation) means that a
typical 2 Ah@3.3 V pacemaker battery [72] would suffice for
more than 130 million iterations, and more than 750 days if
used continuously - as for most of the time the Fulmine SoC
can be in deep sleep Section IIIdeep sleep mode.

VII. CONCLUSION

This work presented Fulmine, a 65 nm System-on-Chip
targeting the emerging class of smart secure near-sensor data
analytics for IoT end-nodes. We achieve this without using
aggressive technology or voltage scaling, but through the
architectural solution of combining cores and accelerators
within a single tightly-coupled cluster. The use cases we have
proposed show that this approach leads to improvements of
more than one order of magnitude in time and energy with
respect to a pure software based solution, with no sacrifice
in terms of flexibility. The Fulmine SoC enables secure,
integrated and low-power secure data analytics directly within
the IoT node. Without any compromise in terms of security,
the proposed SoC enables sensemaking in a budget of a few
pJ/op - down to 3.16 pJ/op in one case, or 315 Gop/s/W.
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