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Abstract—Due to the lack of proper dedicated authenticated
encryption algorithms, the CAESAR cryptographic competition
aims to find new such algorithms. The goal of authenticated
encryption is to provide both confidentiality and authentic-
ity within a single algorithm. This paper introduces the first
application-specific integrated circuit of AEGIS128, which is
one promising submission to the CAESAR competition. The
dedicated hardware design is optimized towards yielding the
smallest area for AEGIS128. Using a 0.13μm low-leakage process
from Faraday Technology, the design requires merely 13,558 gate
equivalents or 0.06942 mm2. Simulations of this design at a clock
frequency of 100 MHz result in 65 Mbps data throughput.

I. INTRODUCTION

Confidentiality and authenticity are both fundamental ser-
vices in cryptography. Especially when sending data over an
insecure channel, it is desirable to guarantee data authenticity
in addition to confidentiality. An algorithm which provides
such functionality is called an Authenticated Encryption (AE)
algorithm.

One method to provide authenticated encryption is to use
a block cipher such as the Advanced Encryption Standard
(AES) [6] in different modes of operation. Confidentiality
alone is provided using, e.g., AES in the Cipher Block
Chaining mode (CBC) [7]. For authenticated encryption, an
additional, separate authentication step is needed in order
to generate the Message Authentication Code (MAC) that
ensures the authenticity. This can be done using a cipher-
based MAC (CMAC) [8] algorithm. In such a setup, a second
key to provide the authenticity is needed in addition to the
encryption key. More efficient than providing confidentiality
and authenticity separately are block cipher modes of operation
for authenticated encryption, e.g., AES-CCM (AES Counter
with CBC-MAC) [10], or AES-GCM (AES Galois/Counter
Mode) [9].

To avoid the use of a full block cipher and the overhead
of two separate processing steps and keys, a dedicated au-
thenticated encryption algorithm is desirable. Due to the lack
of proper algorithms, the international cryptographic research
community decided to start a competition called CAESAR
[2], which stands for ”Competition of Authenticated Encryp-
tion: Security, Applicability and Robustness”. This challenge
attempts to find suitable authenticated encryption algorithms
that have advantages over the existing block cipher modes
of operation for authenticated encryption. For comparing the
submissions and for proper selection of the final algorithms,

optimized implementations are needed. Since there are no
published hardware implementations yet, we show the first
area-optimized Application-Specific Integrated Circuit (ASIC)
design of AEGIS128 [12], which is one of the candidates to
CAESAR.

The suite of AEGIS algorithms provides three different
variants, respectively AEGIS128, AEGIS256 and AEGIS128L.
These algorithms differ in key size, state size and performance.
This paper describes an ASIC implementation of AEGIS128
that is optimized for low area. The hardware design results in
an area of 13,558 Gate Equivalents (GE). When operating at a
clock frequency of 100 MHz, a data throughput of 65 Mbps is
reached. In addition to the ASIC implementation, we present
the synthesis results on a Xilinx Artix-7 Field-Programmable
Gate Array (FPGA).

The paper is structured as follows: in Section 2 the
AEGIS128 algorithm is introduced. Section 3 and 4 describe
the ASIC implementation of AEGIS128 and how to com-
municate with the host interface. Section 5 describes which
optimization techniques were used to reduce the chip size.
Section 6 details the implementation of AEGIS128 on an
Artix-7 FPGA. Finally, Section 7 presents the implementation
results.

II. ALGORITHM

This section intends to give a short introduction to the
construction of AEGIS128 [12]. AEGIS128 uses a 128-bit
key, a 128-bit initial vector and a 640-bit state to encrypt and
authenticate 128-bit message blocks. In addition, the algorithm
also provides authenticity for dedicated associated data, which
is, e.g., non-confidential metadata.

The core function of this algorithm is StateUpdate128,
which is based on the AES round function [6], denoted AES-
Round. The AES round function uses the following subfunc-
tions: AES-AddRoundKey, AES-ShiftRows, AES-MixColumns
and AES-SubBytes. StateUpdate128 updates the state Si, which
is split into five 128-bit parts Si,j (j=0,..,4), with a 128-bit
message block mi as follows:

function StateUpdate128 (Si,mi)
Si+1,0 ← AESRound(Si,4, Si,0 ⊕mi)
Si+1,1 ← AESRound(Si,0, Si,1)
Si+1,2 ← AESRound(Si,1, Si,2)
Si+1,3 ← AESRound(Si,2, Si,3)
Si+1,4 ← AESRound(Si,3, Si,4)
return Si+1
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The first step is to load the 128-bit key K128

and the 128-bit initialization vector IV128 to assemble
the initial state S−10. As specified in [12], the initial-
ization also uses two constants: const0 is defined as
0x6279E990593722150D08050302010100 and const1 is de-
fined as 0xDD28B57342311120F12FC26D55183DDB.

After initialization, the state is updated 10 times using
StateUpdate128. Thereby, the input to StateUpdate128 is al-
ternated between K128 and IV128.

S−10,0 ← K128 ⊕ IV128

S−10,1 ← const1
S−10,2 ← const0
S−10,3 ← K128 ⊕ const0
S−10,4 ← K128 ⊕ const1
for i = −5 to i = −1 do

m2i ← K128

m2i+1 ← IV128

for i = −10 to i = −1 do
Si+1 ← StateUpdate128(Si,mi)

For associated data, the algorithm ensures authenticity
without confidentiality. If associated data AD is provided, i.e.,
its length adlen > 0, the state is updated in the next step
by invoking StateUpdate128 with all associated data. Thereby,
128 bit of associated data are processed per update round. This
happens uL times whereas uL is �adlen

128 �. If no associated data
is provided, this processing step is skipped.

Si+1 ← StateUpdate128(Si, ADi)

Next, each 128-bit block of the plaintext Pi is encrypted
to the ciphertext block Ci by XORing Pi with parts of the
current state SuL+i. In the respective computation below, &
denotes a bitwise AND operation. After the encryption of each
block, the state is updated using StateUpdate128 by using the
plaintext block Pi as the input. This procedure is repeated vL
times whereas vL is defined as �msglen

128 �.

Ci ← Pi ⊕ SuL+i,1 ⊕ SuL+i,4 ⊕ (SuL+i,2&SuL+i,3)

SuL+i+1 ← StateUpdate128(SuL+i, Pi)

The last step is to compute the MAC, which is also called
the tag T . Therefore, a temporary 128-bit field tmp that is
assembled from the two 64-bit integers adlen (length of asso-
ciated data) and msglen (message length) is XORed with the
current state SuL+vL,3. Using tmp as an input, StateUpdate128
is then applied to the state seven times. Finally, the tag T is
computed by XORing all 128-bit parts SuL+vL+7,i of the final
state SuL+vL+7.

tmp ← SuL+vL,3 ⊕ (adlen||msglen)
for i = uL + vL, to i = uL + vL,+6 do

Si+1 ← StateUpdate128(Si, tmp)

T ← ⊕4
i=0SuL+vL+7,i

Ciphertext decryption works almost the same as encryption:
the resulting ciphertext C is loaded as the message and the
same processing as during encryption is done. However, it is
necessary to perform the state updates using the decrypted
plaintext that is produced during the computation. Moreover, it
is important to only use valid bits from the decrypted message

P . This needs to be taken into account for the last block if the
message length msglen is not a multiple of 128 bit. All bits
exceeding the actual message length have to be set to zero.

Pi ← Ci ⊕ SuL+i,1 ⊕ SuL+i,6 ⊕ (SuL+i,2&SuL+i,3)

SuL+i,1 ← StateUpdate128(SuL+i, Pi)

The tag T required for verifying the authenticity of the mes-
sage is finally computed the same way as during encryption.

III. IMPLEMENTATION

The hardware implementation splits the design up into
three major components: first, an 8-bit AMBA Peripheral Bus
Slave [1], second, the datapath, and third, the control unit. The
AMBA Peripheral Bus (APB) is used for communication with
the host. The interaction between these modules is shown in
Fig. 1.

AEGIS128

Control UnitDatapath

AMBA Interface

Host

Fig. 1. Top-level structure of the AEGIS128 chip.

The datapath is controlled by the control unit, which is
implemented as a Finite State Machine (FSM). The FSM sets
its control signals depending on the current state and therefore
triggers an action in the datapath. The latter implements all
required data operations and therefore contains appropriate
combinatorial logic and registers.
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Fig. 2. Datapath structure of AEGIS128 - all paths have a width of 128 bit.

The datapath shown in Fig. 2 contains an Arithmetic Logic
Unit (ALU), a 640-bit state register STATE, and two shared
registers: DATA (128 bit, also used for the key) and TAG
(128 bit, also used for the intialization vector iv, the assosciated
data length adlen, and the message length msglen). A 128-bit
multiplexer structure is responsible for routing the result of the
ALU depending on the current operation.
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The ALU is built around a 128-bit accumulator and
provides six different operations. The operations are: Load
ACCU, XOR, AND, AES-ShiftRows, AES-MixColumns
and AES-SubBytes. Compared to a standard AES
implementation, AEGIS does not need the inverse
functions of AES-MixColumns, AES-ShiftRows and
AES-SubBytes. The operation AES-SubBytes substitutes
single bytes according to the AES S-Box and contains one
pipeline stage. This means it takes 17 cycles to perform
AES-SubBytes operations on the whole accumulator: one
cycle for filling the pipeline and 16 cycles to perform the
operation on all bytes in the accumulator. AES-MixColumns
operates on four bytes per cycle, which means it needs to be
executed four times to perform the operation on the whole
accumulator. The input vector of the ALU defines on which
bytes the operation should be done. All other operations work
on the whole accumulator in one clock cycle. To save area,
the S-Box of AES-SubBytes and AES-MixColumns are
implemented as optimized versions, which will be described
in the following.

A. AES-MixColumns

AES-MixColumns is based on a multiplication operation in
the Galois Field GF(28). To avoid using a dedicated multiplier,
the implementation is done using left shift operations (with a
conditional addition of the irreducible polynomial 0x1b) and
additions as proposed in [11]. The operation uses four bytes as
an input and is performed on all four bytes a{i,j,k,l} in parallel
as shown in the hardware structure in Fig. 3.
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Fig. 3. Low-Area AES-MixColumns implementation.

With this structure, four bytes are handled per clock cycle.
To perform this operation on all bytes within the accumulator,
four clock cycles are needed. The most area-consuming part
of this operation is the (de)-multiplexer structure to get the
required bytes into the logic and to write them back to the
right position in the register.

B. AES S-Box

The S-Box can be implemented as a ROM, but this
approach is problematic when optimizing for low area and low

power consumption. Another approach is to implement a com-
binatorial lookup table. This is rather easy to implement, but
is inefficient in terms of area and has performance drawbacks
because of long combinatorial paths.

Therefore, it is better to use an S-Box implementation
based on optimized combinatorial logic such as the one de-
scribed in [11]. This reduces the required area and decreases
the critical path through the S-Box. Thus, area optimization
also results in higher possible clock frequencies. The area of
the LUT-based S-Box is 830 GE (S-Box is implemented with
a one-stage pipeline to reduce the critical path), while the
optimized S-Box only needs 550 GE (optimized combinatorial
logic with one pipeline stage) when synthesizing for a target
clock of 100 MHz.

With a single S-Box only one byte can be substituted per
clock cycle. To parallelize the substitution process for all bytes
of the accumulator, it is necessary to have as many S-Boxes as
bytes to be substituted. Because this implementation focuses
on yielding low area, only one S-Box is placed on the chip.
To substitute all bytes of the accumulator, the substitution
operation is serialized. This increases the operation’s execution
time to 17 clock cycles for substituting all 16 bytes.

IV. HOST CONTROL

To perform encryption or decryption, multiple steps have to
be executed. For this reason, the hardware design uses a state
machine for processing the data as shown in Fig. 4. Depending
on the current state, the host has to perform different actions
for further processing.
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Fig. 4. State machine of the AEGIS128 chip.

The host communicates over an 8-bit AMBA APB interface
with the chip. Since the algorithm-related registers are larger
than 8 bit, they are concatenated from 8-bit bus transfers. Tab. I
shows the registers available to the host and their respective
address ranges.

TABLE I. REGISTER MAP OF THE AMBA-APB INTERFACE

Register Address Type
CONTROL 0x00 R/W

DATA / KEY 0x10-01F R/W

TAG / IV / LENGTH 0x20-0x2F R/W
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The register in the address range 0x10 to 0x1F serves a
different purpose depending on the current state. In state IDLE,
it is used to write the key. In state LOAD_AD, it is used to
write the associated data. Moreover, the register is used to load
message blocks and read the en-/decrypted message blocks in
the states LOAD_DATA and READ_CIPHER, respectively.

Similarly, the register in the address range 0x20 to 0x2F is
specific to the chip’s current state. When being in the IDLE
state, this address range is used to write the initial vector. If
the chip is in state LOAD_LEN, this address range is used
to write the 64-bit lengths of associated data and message
data as shown in Tab. II. When being in state READ_TAG, the
computed message tag can be read from this register. Reading
from this register in any other state returns 0x00 to avoid the
leakage of any internal data processing. Writing to this register
when not being in either the state IDLE or LOAD_LEN has
no effect.

TABLE II. REGISTER MAP FOR SHARED LENGTH REGISTERS

Register Address Type
AD LENGTH 0x20-0x27 R/W

DATA LENGTH 0x28-0x2F R/W

In addition to the algorithm-related registers, there is a
CONTROL register. The host uses this register to read the
current state and to control the chip. The layout of the
CONTROL register is shown in Tab. III.

TABLE III. BIT LAYOUT OF CONTROL REGISTER

Bit 7 6 5 4

Type - R R R

Name RFU STATE[2] STATE[1] STATE[0]

Bit 3 2 1 0

Type W R W R/W

Name Reset Busy Start OP Mode

State transitions as shown in Fig. 4 only happen if the
user either writes the reset or the start bit in the CONTROL
register. To maintain readability, state transitions from any state
to IDLE by setting the reset bit are omitted. Most of the state
transitions in Fig. 4 happen if the start bit is written. During
state transitions, the host signals this with a BUSY state.

V. LOW AREA OPTIMIZATION

This work’s implementation focuses on yielding lowest
possible area. Several measures are taken into account to
decrease the number of required gates. One such measure is
register sharing. Since the key K128 and the initial vector IV128

are only needed once during initialization, they are loaded into
the DATA and TAG registers, respectively. The TAG register is
furthermore used for storing the lengths of the associated data
(adlen) and the message (msglen). Only when being in state
READ_TAG, the message tag is stored in this register. With
this technique 384 bit of registers can be saved.

Another measure to reduce area is the appropriate align-
ment of registers that are larger than 8 bit. Since the AMBA
APB interface has 8-bit width, write-enable signals need to
be generated to write an incoming byte to the right position
in the register. For the 128-bit input/output registers of the
AEGIS128 chip, the lower bits of the address can directly

generate the write-enable signal if the registers are aligned to
addresses that are a multiple of 16.

Combining these techniques with optimized implementa-
tions of AES-SubBytes and AES-MixColumns decreases
the required area by 20 %.

VI. FPGA IMPLEMENTATION

In addition to the ASIC implementation described before,
we provide a fully running design for a Xilinx Artix-7 FPGA.
This design reuses the ASIC design. For communication, an
UART (Universal Asynchronous Receiver Transmitter) inter-
face is used. This requires an additional layer to translate the
UART data to AMBA APB commands. The structure of the
respective design is shown in Fig. 5.

AEGIS128

UART
TransmitterReceiver

Rx / Tx

AMBA APB Serial Master

Fig. 5. Top-level structure of FPGA implementation of AEGIS128.

To write a byte to a specific address of the AMBA APB
bus, the host needs to write three bytes over UART: first, a
control byte indicating a write transfer, second, the address,
and third, the data byte to be written. Reading a byte from a
specific address is done accordingly. The host first needs to
write two bytes over UART: the control byte indicating a read
transfer and the address. Then, the host can read the data byte
from the APB interface.

The proposed design, as shown in Fig. 5, is successfully
synthesized with a clock frequency of 100 MHz. It uses 727
slices on a Xilinx XC7A100T-1CSG324-3 FPGA. If the clock
frequency is increased to 130 MHz, the design requires 859
slices.

VII. RESULTS

The implementation uses a 0.13μm low-leakage CMOS
process from Faraday Technology [3]. The final layout is
shown in Fig. 6.

Synthesis and Place and Route (P&R) was done using
Cadence design tools. With the optimizations described in
Section 3, the minimum area of the implementation after
synthesis is 13,558 GE. The design is then capable of clock
frequencies of up to 100 MHz. After P&R the area increases
to 14,481 GE. The difference in area is due to the added
filler cells, the clock tree and other cells needed for P&R.
For the specified process technology, this results in a chip
size of 0.06942 mm2 after synthesis and 0.07414 mm2 after
P&R. The proposed design has a throughput of 65 Mbps when
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Fig. 6. Layout of AEGIS128.

operating at a clock frequency of 100 MHz. The maximum
clock frequency was determined with 111 MHz. In this case,
the chip area and throughput increase to 15,842 GE and
71 Mbps, respectively.

As shown in Tab. IV, 189 clock cycles are needed to
process one block of 128-bit associated data. To encrypt or
decrypt one 128-bit message block, 197 clock cycles are
required. Moreover, Tab. IV presents the runtime information
for initialization and finalization. The cycle counts already
include the needed cycles to write to or read from the AMBA
APB interface.

TABLE IV. CLOCK CYCLES FOR DIFFERENT OPERATIONS.

Operation Cycles
Initialization 1,374

Associated Data 189

Encrypt/Decrypt 197

Finalization 863

A detailed area estimation of all components is shown in
Tab. V. The datapath, which contains all registers, is the most
area-consuming part.

TABLE V. AREA ESTIMATION AFTER SYNTHESIS.

Component GE
Interface 498

Algorithm 9,950

Algorithm : Control Unit 1,755

Algorithm : Datapath 11,305

Algorithm : Datapath : ALU 3,314

Sum 13,558

Since the algorithm is based on a 640-bit state and data
processing is done using 128-bit blocks, the resulting chip
is larger than comparable AES implementations such as de-
scribed in [4]. An implementation of AES-CCM optimized for
low energy is shown in [5]. Yielding a maximum throughput
of 54 Mbps, their design consumes 14,936 GE. Consequently,
authenticated encryption using AES-CCM consumes more
chip area than using AEGIS128. Moreover, the AES-CCM
implementation in [5] does not provide authenticity for associ-
ated data. With a clock frequency and throughput of 111 MHz
and 72 Mbps, respectively, the hardware implementation of
AEGIS128 outperforms AES-CCM by roughly 33 %.

VIII. CONCLUSION

As part of the CAESAR competition, AEGIS128 is one
promising candidate for a new authenticated encryption al-
gorithm. The paper describes the first ASIC implementation
of AEGIS128. In this context, we proposed techniques to
reduce the required chip area. In particular, register sharing,
optimizations of the basic AES routines, and a combinatorial
S-Box are incorporated to minimize area. Application of these
techniques decreased the required area by 20 %, ultimately
resulting in a chip area of 13,558 GE.
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